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Abstract. Genome rearrangements are a valuable source of information
about early evolution, as well as an important factor in speciation pro-
cesses. Reconstruction of ancestral gene orders on a phylogeny is thus one
of the crucial tools contributing to understanding of evolution of genome
organization. For most models of evolution, this problem is NP-hard.
We have developed a universal method for reconstruction of ancestral
gene orders by parsimony (PIVO) using an iterative local optimization
procedure. Our method can be applied to different rearrangement mod-
els. Combined with a sufficently rich model, such as the double cut and
join (DCJ), it can support a mixture of different chromosomal architec-
tures in the same tree. We show that PIVO can outperform previously
used steinerization framework and achieves better results on real data
than previously published methods.
Datasets, reconstructed histories, and the software can be downloaded
at http://compbio.fmph.uniba.sk/pivo/.

1 Introduction

Genome rearrangements, such as inversions, transpositions, chromosome fusions
and fissions, are evolutionary events that change the order of genes in genomes.
These events are rare compared to point mutations, and are thought to be precur-
sors of speciation [1]. Due to their low evolutionary rates, rearrangements are a
valuable source of information about early evolution, and various rearrangement-
based distances can provide phylogenetic signal well beyond the saturation of
traditional nucleotide and protein point mutation models [2].

On the other hand, rearrangements make comparative analysis much more
complex. Even though it is possible to reconstruct ancestral sequences in regions
without breakpoints [3], it is much more difficult to order individual segments
of ancestral genomes correctly [4].

In this paper, we present a new method for analysis of rearrangement his-
tories, using gene orders of present-day species on a given phylogeny. Our goal
is to reconstruct gene orders in all ancestral nodes of the phylogenetic tree. In
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(b) Graph G(π). Each marker consists of two ex-
tremities – head and tail; T denotes a telomere.
Solid edges connect extremities of a single marker,
dashed edges are adjacencies.

Fig. 1. Genome π consisting of two linear chromosomes and one circular chromosome
(left) and its graph representation (right).

particular, we are looking for the most parsimonious ancestral gene orders, min-
imizing the overall rearrangement distance (this problem is also called the small
phylogeny problem). Even though our algorithm is not guaranteed to find the
optimal solution, it presents a framework that generalizes most search strategies
applied to various versions of this problem to date, e.g. [5, 6].

Our method, PIVO (Phylogeny by IteratiVe Optimization), is one of the first
practical tools applicable to analysis of real datasets spanning a complex phy-
logeny and accommodating a variety of genome architectures (single vs. multiple
chromosomes, linear vs. circular chromosomes). In our experiments, we use the
double cut and join (DCJ) model [7, 8] for measuring rearrangement distance,
but our method can be easily applied to other rearrangement distance measures
reviewed in the next section. We demonstrate the accuracy of our program on the
well-studied dataset of Campanulaceae chloroplast genomes [9], and apply it to
the reconstruction of rearrangement histories of newly sequenced mitochondrial
genomes of pathogenic yeasts from Hemiascomycetes clade [10].

Preliminaries, definitions, and related work. We will represent a genome
as a set of markers (e.g., genes or synteny blocks) with known order and orien-
tation. In this setting, a genome can be represented as a graph in which each
(oriented) marker corresponds to two vertices, called extremities of the marker;
the ends of linear chromosomes are represented by special vertices called telom-
eres. The edge set of this graph consists of the marker edges, joining the two
extremities of each marker, and the adjacencies, joining two consecutive extrem-
ities in the genome or an extremity with a telomere (Fig. 1). Each connected
component of this graph is thus a cycle or a path (representing a circular or a
linear chromosome, respectively).

In our program, we employ the double cut and join (DCJ) [7, 8] and re-
versal rearrangement model [11, 12]. The DCJ model encompasses a rich set of
rearrangement operations, and is able to represent both linear and circular chro-
mosomes. An evolutionary operation in the DCJ model takes two adjacencies,
{p, q} and {r, s}, and replaces them by either {p, r} and {q, s}, or {p, s} and
{q, r}. This operation is quite general. A single DCJ operation can represent a
reversal, translocation, chromosome fusion or fission, and excision or integration



of a circular chromosome. Two operations can simulate a transposition. The
DCJ distance is defined as the minimum number of DCJ operations needed to
transform one genome into another. The distance between two genomes can be
computed in linear time [8].

The reversal model is another popular model of evolution by rearrangements
[13]. Each genome is represented by a signed permutation (a sequence of chro-
mosomal markers with their orientations), allowing only genomes with a single
linear chromosome. Genomes can be modified by a reversal operation that takes
a contiguous section of markers in the permutation and replaces it with the
markers in reversed order and with reversed orientations. The distance between
two genomes with the same marker content is then the minimum number of re-
versals needed to transform one genome into the other. Reversal distance can be
computed in linear time [14], and can be easily adapted for circular genomes. The
Hannenhalli-Pevzner (HP) model [15] generalizes the reversal model to genomes
with multiple linear chromosomes, allowing in addition to reversals also translo-
cations, fusions, and fissions. The HP-distance can also be computed in linear
time [16, 17] and can be seen as a special case of the DCJ model restricted to
operations that do not create circular chromosomes.

For completeness, we also consider a simple breakpoint distance [18]. A break-
point between two genomes is a pair of markers that are consecutive in one
genome but not in the other. The number of breakpoints between the two
genomes is called the breakpoint distance. While this measure does not cor-
respond to a particular set of evolutionary operations, it is clear that various
rearrangement operations generally increase the breakpoint distance between
the genomes, unless they reuse already created breakpoints.

While we can compute distances in all of these models efficiently, finding
the most parsimonious solutions in more complex scenarios involving multiple
genomes is more difficult. Perhaps the simplest scenario is the median problem,
where we are given three extant genomes π1, π2, π3 and a rearrangement distance
measure d, and our task is to compute a single ancestral genome, a median πM ,
that would minimize the sum of distances to the extant genomes d(π1, πM ) +
d(π2, πM ) + d(π3, πM ).

Median problem has been shown to be NP-hard for almost every considered
rearrangement model (unichromosomal reversal distance [19], unichromosomal
breakpoint distance [20, 21], multichromosomal linear breakpoint distance [22],
unichromosomal [19] and multichromosomal [22] DCJ distance) and is conjec-
tured to be NP-hard for other rearrangement models. One notable exception is
the breakpoint distance on multiple circular or mixed chromosomes for which
the median can be computed in polynomial time [22].

On the other hand, practical algorithms were developed for particular mod-
els, allowing to find good solutions to the median problem in many instances.
Blanchette, Bourque, and Sankoff [23, 18] reduce the breakpoint median prob-
lem to the travelling salesman problem (TSP) and then use a branch-and-bound
algorithm to solve the resulting instance of TSP exactly. Siepel and Moret [24]
and Caprara [25] propose exact practical solutions for the reversal median.



Heuristic median solvers try to move the given genomes closer and closer
to each other until they meet at an approximate median [6, 26–28]. A similar
heuristic was also implemented for the DCJ model by Adam and Sankoff [29],
while Xu and Sankoff have recently developed a DCJ median solver that is exact
yet fast in practical instances [30].

The median problem is a special case of the small phylogeny problem, where
we are given multiple extant genomes and their phylogenetic tree, and our goal is
to compute genomes of their ancestors. According to the parsimony principle, the
best reconstruction is the one involving the smallest number of rearrangement
operations.

More formally, let G be the set of all possible genomes on a particular set of
markers according to the chosen rearrangement model and let d be a distance
measure on G. We are given a phylogenetic tree T = (V,E) with the set of
leaves L. For each leaf, we are also given a genome of the corresponding species,
i.e., we are given a function g : L → G. An evolutionary history is a function
h : V → G extending g to the internal (ancestral) vertices. Our goal is to find
an evolutionary history h which minimizes the overall evolutionary distance in
the tree d(h) =

∑
{u,v}∈E d(h(u), h(v)).

The small phylogeny problem is trivially NP-hard for most rearrangement
distance measures, since it is a generalization of the median problem. A no-
table exception is the breakpoint distance, for which the complexity of the small
phylogeny problem is unknown.

Perhaps the most popular method for solving the small phylogeny problem
is the steinerization method [31]. The main idea is to iteratively improve the
evolutionary history until a local optimum is reached. In each iteration, we go
through all internal vertices v. We take an ancestral genome πv and its three
neighbours πa, πb, πc, compute the median πM of πa, πb, πc, and replace πv with
πM if it yields a better overall score. If no vertex can be improved by taking the
median of its neighbours, we have found a locally optimal evolutionary history.
This approach is implemented in BPAnalysis software [23, 18] for the breakpoint
model and in GRAPPA software [32–34] for both breakpoint and reversal models.
The same approach was implemented for the DCJ model by Adam and Sankoff
[29]. MGR [6], another small phylogeny solver for reversal model, uses the simple
heuristic based on using operations bringing genomes closer to other genomes
in the tree. Our new algorithm, presented in the next section, encompasses and
extends all these existing approaches.

Note that rearrangement models can also be used to reconstruct phylogenetic
trees based on the order of markers in genomes. Perhaps the easiest method is to
compute distances between all pairs of extant genomes and then use traditional
distance-based algorithms for phylogeny reconstruction [2]. Another option is to
solve the full large phylogeny problem, where we are looking for both the phylo-
genetic tree and the evolutionary history h minimizing the overall evolutionary
distance. The small phylogeny can be used as a subroutine in the large phylogeny
problem solvers. For a small number of species, we can enumerate all possible
trees and for each tree compute the small phylogeny score, as in BPAnalysis



Algorithm 1: Iterative local optimization

Data: evolutionary history h
Result: local optimum
s′ ← score(h), s←∞ ;1

while s′ < s do2

cand← generate lists of candidates (neighbourhood of h);3

h← best(cand);4

s← s′, s′ ← score(h);5

end6

return h7

and GRAPPA [23, 34]. Alternatively, we can use the sequential addition heuristics,
where we start from a trivial three-species star phylogeny and build the tree
iteratively by adding new species, and reconstructing ancestral genomes in each
step as in MGR or amGRP [6, 35]. Our new method can also be used in this context.

2 Methods

In this section, we introduce a new general approach to the small phylogeny
problem based on iterative local optimization. The basic idea is that in each
step, we propose multiple candidates for ancestral genomes in each internal node
of the tree and choose the most parsimonious combination of the candidates by
dynamic programming. We will formulate the method in general terms for any
rearrangement distance measure d that can be efficiently computed.

Consider a phylogenetic tree T = (V,E) with the set of leaves L and genomes
of extant species g : L → G. We start with some history h0. For a particular
history h and each internal vertex v, we propose a set of candidates cand(h, v).
We define a neighbourhood of history h as the set of all possible combinations of
candidate genomes N(h) = {h′ | ∀v ∈ V : h′(v) ∈ cand(h, v)}. We then find the
best history in the neighbourhood N(h) by a dynamic programming algorithm.
If the new history is better than the previous one, we take it and repeat the iter-
ation. Otherwise, we have found a local minimum and the algorithm terminates.
We repeat the local optimization several times starting from different histories
h0. Algorithm 1 summarizes the local optimization method.

Example #1: For each internal vertex v, the set of candidates cand(h, v) can
be the set of all the genomes within the distance 1 from h(v). The neighbourhood
of h is then the set of all histories we can obtain from h by performing at most
one operation to each ancestral genome. Note that the size of N(h) is exponential
in the number of internal vertices, but as we will see later, we will never have to
enumerate the entire neighbourhood.

Example #2: The steinerization approach mentioned in Section 1 is a special
case of our method. Here, cand(h, v) = {h(v)} for all vertices except for one
vertex w with neighbours a, b, c, for which cand(h,w) = {h(w),median(h(a),
h(b), h(c))}.

Note that the opposite is not true, and in fact, proposing multiple candidates
and then choosing the best combination is a crucial feature of our algorithm.
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Fig. 2. A simple example showing a situation, where our more general approach out-
performs the steinerization method. Given a quartet phylogeny and genomes at the
leaves, the steinerization method has a local optimum with score 5 under the DCJ
model (left), while there is a better solution with score 4 (right) which may be ob-
tained when considering multiple candidates and choosing their best combination.

Consider a simple example on a quartet phylogeny in Figure 2. The steinerization
approach may get stuck in a local optimum as in Figure 2(a) (both ancestral
genomes are medians of the neighbouring vertices). To avoid such local optima,
the steinerization method is repeated from different starting configurations. On
the other hand, if we consider all solutions of the median problems as candidates
or if we consider the neighbouring genomes (that are within one DCJ operation
from the current ancestors) and then choose the best combination, we obtain a
better solution, shown in Figure 2(b).

We can generalize this example to configurations that will result in arbitrarily
bad local optima of the steinerization method, whereas the global optimum can
be found by our method.

2.1 Finding the Best History in a Neighbourhood

Even though the size of the neighbourhood N(h) can be exponential (it has∏
v | cand(h, v)| elements), the best history can be found in polynomial time

using dynamic programming.
Let cui be the i-th candidate from cand(h, u) and let M [u, i] be the lowest

score we can achieve for the subtree rooted at u if we choose candidate cui as an
ancestor. M [u, i] = 0 if u is a leaf. If u is an internal vertex with children v and
w, we first compute values M [v, j], M [w, k] for all j, k. Then

M [u, i] = min
j
{M [v, j] + d(cui , c

v
j )}+ min

k
{M [w, k] + d(cui , c

w
k )}.

This algorithm can be easily generalized for non-binary phylogenetic trees.
If n is the number of species, m the number of markers in each genome, and k

the number of candidates for each ancestor, the best history can be found in time
O(nmk2) (provided that the distance between two genomes can be computed in
O(m) time).

2.2 Strategies for Proposing Candidates

A crucial part of our method is proposing good candidates. By proposing more
candidates, we explore a larger neighbourhood, but finding the best combination



of candidates is slower. Furthermore, if we propose only candidates that are close
to the genomes in the current history, the convergence to the local optimum may
be slow. Here, we list several strategies for proposing candidates.

Extant species. In the initialization step, we can take genomes of the extant
species as candidates in each internal node to get an evolutionary history to start
with.

Intermediates. For a vertex v with adjacent vertices u and w, we can take
intermediate genomes as candidates, i.e. if π, γ are genomes at u and w, we can
sample genomes θ such that d(π, θ) + d(θ, γ) = d(π, γ).

Medians. The steinerization method uses a median of the genomes in the
three adjacent vertices as a candidate. Note that often there are many medians
with the same score. Furthermore, Eriksen [36] shows that medians of moderately
distant genomes may be spread wide apart. In our method, we do not need to
decide beforehand which median to use. Instead, we consider all the medians as
candidates, as already advocated by Eriksen [37] and Bernt et al. in amGRP [35]
(amGRP, however, backtracks over different choices).

If we compute the median by branch-and-bound, the time to list all medians
is comparable to the time to find just one median (median solvers of Siepel [24],
and Caprara [25] are capable of listing all medians). If we try to find the median
heuristically by repeatedly moving the given genomes closer to each other, we
can take the intermediate genomes as candidates. Another option is to find just
a single median and search its neighbourhood for medians which can be added
to the candidate list.

Neighbours. We can include neighbourhoods of individual genomes. In partic-
ular, if h(v) = π, we can add the set N(π) = {γ ∈ G | d(π, γ) ≤ 1} to cand(h, v).
For most models, the size of N(π) is roughly quadratic in the number of mark-
ers. Since for large genomes this becomes infeasible, we can include only genomes
that do not increase the total distance to adjacent vertices, genomes closer to
some genome in an adjacent vertex, or focus on a particular subset of neighbours.

Best histories. We can take several locally optimal histories and use the
reconstructed ancestors as candidates. In this way we can “recombine” locally
optimal solutions discovered previously.

2.3 Unequal Gene Content

A useful extension of our method is to allow a set of possible genomes in each leaf
to be given on input instead of one fixed genome g(v). This feature is useful if we
are uncertain about the order of markers in some genomes. The algorithm will
choose one of the alternative gene orders, so as to minimize the overall parsimony
cost. Note that this choice can change between the iterations, and consequently
we do not commit to a particular interpretation of the dataset until the end of
the local optimization.

In addition to modeling uncertainty about the gene order in the extant
species, we can also use this method for handling recent duplications or losses.
Genome rearrangement models usually require equal gene content in all consid-
ered genomes. However, if one of the genomes contains a duplicated segment of



Table 1. The number of operations used to explain Campanulaceae dataset under
different models and with different algorithms.

reversal unichr. general
distance DCJ DCJ

GRAPPA (Moret et al. [33]) 67
MGR (Bourque and Pevzner [6]) 65
GRAPPA (Moret et al. [38]) 64
BADGER (Larget et al. [39]) 64
ABC (Adam and Sankoff [29]) 64 59
PIVO (this paper) 62 62 59

markers, we can try to delete one or the other copy, producing two alternative
gene orders that are used as candidates for the corresponding leaf of the tree. The
algorithm will choose one of them for the locally optimal history h, presumably
the one corresponding to the ancestral state before the duplication happened.
We can extend this idea and use a larger set of candidates in case of multiple
duplications or a gene loss. However, list of candidates will become prohibitively
large for genomes with many such events.

3 Results

We have implemented our new method and the strategies for exploring neigh-
bourhoods described in the previous section using the DCJ and reversal rear-
rangement models. We demonstrate utility of our method on two datasets.

The Campanulaceae cpDNA dataset. For comparison, we applied our pro-
gram to a well-studied dataset of 13 Campanulaceae chloroplast genomes [9].
Each genome in this dataset consists of a circular chromosome with 105 markers.
Using the phylogenetic tree in Fig. 3(a) reconstructed by Bourque and Pevzner
[6] with MGR, the results are presented in Table 1.

Using GRAPPA software, Moret et al. [33] found 216 tree topologies and evo-
lutionary histories with 67 reversals. Bourque and Pevzner [6] using MGR later
found a solution with 65 reversals. Even better solutions with 64 reversals were
found by Moret et al. [38] (using GRAPPA) and Larget et al. [39] (using BADGER).

Adam and Sankoff [29] used the more general DCJ model and the phyloge-
netic tree by Bourque and Pevzner. They found a history with 64 DCJ oper-
ations with ancestors having a single chromosome, and a history with 59 DCJ
operations with unconstrained ancestors. However, as Adam and Sankoff note:
“There is no biological evidence in the Campanulaceae, or other higher plants, of
chloroplast genomes consisting of two or more circles.” The additional circular
chromosomes are an artifact of the DCJ model, where a transposition or a block
interchange operation can be simulated by circular excision and reincorporation.

We penalized multiple chromosomes in the dynamic programming objective
function to avoid such artifacts and found several histories with 62 DCJ opera-
tions, where all the ancestors had a single circular chromosome. Moreover, these
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Fig. 3. Phylogenetic trees used in the experiments.

histories only require 62 reversals, which further improves on the best previously
known result of 64 reversals by Moret et al. [38] and Larget et al. [39].

The Hemiascomycetes mtDNA dataset. We have also studied evolution
of gene order in 16 mitochondrial genomes of pathogenic yeasts from the CTG
clade of Hemiascomycetes [10]. The phylogenetic tree (Fig. 3(b)) was calculated
by MrBayes [40] from protein sequences of 14 genes and is supported by high
posterior probabilities on most branches.

The genomes consist of 25 markers (synteny blocks): 14 protein-coding genes,
two rRNA genes, and 24 tRNAs. Several challenges make this dataset difficult.
First, it combines genomes with a variety of genome architectures: C. subhashii,
C. parapsilosis, and C. orthopsilosis are linear, C. frijolesensis has two linear
chromosomes, and the rest of the species have circular-mapping chromosomes.

Some of the genomes (C. albicans, C. maltosa, C. sojae, C. viswanathii) con-
tain recent duplications which cannot be handled by the DCJ model. As outlined
in Section 2.3, we have removed duplicated genes, and included both possible
forms of the genomes as alternatives in the corresponding leaves. Similarly, the
genomes of C. alai, C. albicans, C. maltosa, C. neerlandica, C. sojae, and L.
elongisporus contain long inverted repeats that are often subject to recombina-
tion resulting in reversal of the portion of the genome between the two repeats.
Both forms of the genome are routinely observed in the same species, and we
include both of them in the corresponding leaf.

Finally, we penalized occurrences of multiple circular chromosomes and com-
binations of linear and circular chromosomes in ancestral genomes. Such combi-
nations would likely represent artifacts of the DCJ model.

Our algorithm, using the extant species, neighbours, and best histories strate-
gies, has found an evolutionary history with 78 DCJ operations. More detailed
discussion of this dataset (including comparison to manual reconstruction in a
subtree of closely related species) is included elsewhere [10].



4 Conclusion

We have developed a new method for reconstructing evolutionary history and
ancestral gene orders, given the gene orders of the extant species and their phy-
logenetic tree. We have implemented our method using the double cut and join
model and studied evolution of gene order in 16 mitochondrial yeast genomes,
demonstrating applicability of our approach to real biological datasets. We have
also analyzed the thoroughly studied Campanulaceae dataset and improved upon
the previous results [33, 6, 38, 39, 29].

Our framework is compatible with a variety of rearrangement models and
the optimization can be adjusted by introducing new strategies of generating
candidate ancestral genomes. The use of the DCJ allowed us to study datasets
that contained both linear and circular genomes and to contribute towards un-
derstanding mechanisms of genome linearization during the evolution [10].

In our experiments, we have explored only a small fraction of possible strate-
gies offered by our framework. Systematic study of new initialization methods,
candidate sets, and rearrangement measures may lead to even better results for a
variety of practical problems. Our work also opened an avenue towards a system-
atic solution of the problems with unequal gene content. Similar directions can
perhaps lead to the possibility of incorporating incompletely assembled genomes,
a challenge posed by the next-generation sequencing technologies.
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