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Abstract. Pairwise sequence alignment is among the most
intensively studied problems in computational biology. We
present a method for alignment of two sequences contain-
ing repetitive motifs. This is motivated by biological studies
of proteins with zinc finger domain, an important group of
regulatory proteins. Due to their evolutionary history, se-
quences of these proteins contain a variable number of dif-
ferent zinc fingers (short subsequences with specific symbols
at each position).
Our algorithm uses two types of hidden Markov models
(HMM): pair HMMs and profile HMMs. Profile HMMs
describe the structure of sequence motifs. Pair HMMs as-
sign a probability to alignment of two motifs. Combination
of the these two types of models yields an algorithm that
uses different score when aligning conserved vs. variable
motif residues. The dynamic programming algorithm that
computes the motif alignments is based on the well known
Viterbi algorithm. We evaluated our model on sequences of
zinc finger proteins and compared it with existing alterna-
tives.

1 Introduction

Pairwise sequence alignment is one of the most stud-
ied problems in bioinformatics. We will concentrate
on alignment of protein sequences, where a protein
can be represented as a string over the alphabet of 20
different amino acids. During the evolution, particular
amino acids in a protein can be substituted by another
amino acid, or even get inserted or deleted. The goal of
sequence alignment is to compare two proteins, quan-
tify their sequence similarity, and to identify pairs of
amino acids that have likely evolved from the same
amino acid in the common ancestor. Over the years,
multitude of variations of this problem have been in-
troduced and many practical software tools were de-
veloped.

Our work is motivated by the study of zinc finger
proteins. These proteins contain a variable number of
up to 40 zinc finger domains [18]. Zinc finger domain is
a stretch of approximately 28 amino acids, the purpose
of which is to bind DNA at specific places. Comparison
of zinc fingers form different proteins reveals that some
positions are very conserved due to their importance
in assuming desired function, while other positions are
highly variable, since they distinguish specific DNA se-
quences where individual zinc fingers bind (Figure 1).
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Fig. 1. The structure of a zinc-finger. Highly variable sites
are marked with black color. The most conserved amino
acids are the four involved in binding the zinc ion [14].

We will focus our attention on the KRAB-ZNF
proteins that have a region encoding one or more Krüp-
pel-associated box domains (KRAB, [2]) followed by
a zinc finger region (Fig. 2). The human genome en-
codes more that 600 of proteins from this family, and
a lot of effort is dedicated to building and maintaining
their catalogues [9], [11], [3]. Complicated repetitive
structure of these genes is a result of a dynamic evo-
lutionary history, full of sequence duplications [7, 12],
and many mutations which help to gain new functions
for duplicated copies.

The repetitive nature of zinc finger protein sequences
complicates their sequence alignment. Traditional align-
ment methods based purely on sequence similarity fre-
quently misalign individual zinc fingers, or even align
a single zinc finger in one sequence to parts of sev-
eral different zinc fingers in the other sequence. Con-
sequently, many studies of these proteins limit their
analyses and infer conclusions based only on the the
KRAB domains or sequences before the zinc finger
region (e.g. [14], [7]), or dispute the relevance of stan-
dard methods applied to genes with high variance in
the number of fingers [16].

In this work, we develop a new method for aligning
sequences with repetitive motifs, such as zinc finger
proteins. To overcome the problems outlined above, we
combine the strength of profile hidden Markov models
which are used to characterize the properties of these
repetitive motifs, and pair hidden Markov models as a
model of sequence alignments. We compare our work
to MotifAligner that was previously used to align zinc
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Fig. 2. Domain structure of typical KRAB-ZNF genes.
The protein contains one or more KRAB domains and an
array of 3 to cca. 40 zinc fingers. [18]

finger proteins [11], and we find our new method to
produce more accurate alignments on our testing set.

In the rest of this section, we introduce necessary
background and notation and describe the MotifAligner
approach to repetitive sequence alignment in more de-
tail. In Section 2, we describe our new profile-profile-
pair alignment method (PPP). We present the results
of experimental comparison of PPP and MotifAligner
in Section 3.

1.1 Background and notation

In this paper, we rely on several standard tools from
computational biology, namely alignments, pair hid-
den Markov models, and profile hidden Markov mod-
els, which we briefly explain in this section.

We start by defining hidden Markov models (HMMs).
An HMM is a probabilistic finite state automaton. We
can use it to generate a random sequence over some al-
phabet as follows. We start in a designated start state
B. In each step, we sample a character of the sequence
from the emission probability distribution associated
with the current state and then randomly change the
state according to the transition probability distribu-
tion. The process ends when we reach the designated
final state E.

The sequence of states visited in the individual
steps is called a state path. We will denote the proba-
bility of emitting x in state v as ev(x) and the proba-
bility of transition from state v to w as tv,w. The joint
probability of emitting a sequence x = x1 . . . xn along
the state path s = s1 . . . sn in a given HMM is

P (x, s) = es1(x1)

n∏
i=2

tsi−1siesi(xi).

A typical task solved with HMMs is to find the most
probable state path that could generate a given se-
quence, i.e. to find s∗ = arg maxs P (x, s). This task
is solved by the Viterbi algorithm based on dynamic
programming [19].

The second important notion is sequence align-
ment. Given a set of related protein sequences, we can
align them by inserting dashes to individual sequences
so that they all have the same length and when we ar-
range them in a table, as in Figure 3, many columns

contain the same or similar amino acids. Several con-
secutive dashes form a gap in the alignment, indicat-
ing that a part of the sequence was deleted or inserted
during the evolution. The sequence alignment prob-
lem can be formulated as an optimization problem and
solved by existing algorithms. For two sequences, the
problem can be solved easily by Needleman-Wunsch
dynamic programming algorithm [10], for multiple se-
quences it is NP-hard [6]. The scoring function for
pairwise alignment is typically based on a substitution
matrix scoring all pairs of aligned amino acids and on
parameters for scoring gaps: gap opening penalty g for
the first dash in a gap and gap extension penalty e for
each additional gap.

ZNF626_4799/12 YKC--EECGKAF-NQSSILTTHERIILERN-

ZNF727_4861/2 YKC--EECGKDC--RLSDFTIQKRIHTADRS

ZXDB_644/5 YQCAFSGCKKTF-ITVSALFSHNRAHFREQE

LLNL1236_4814/2 SMC--PECSKTSATDSSCLLMHQRSHTGKRP

ZNF23_141/15 FQC--KECGKAF-HVNAHLIRHQRSHTGEKP

Fig. 3. Alignment of five sequences of zinc finger motifs
from human proteins.

One way of systematically deriving a scoring func-
tion for pairwise alignments is to use pair HMMs [4].
These models emit two sequences simultaneously. In
one step, the HMM can emit a single character in one
of the sequences or in both. The later case corresponds
to two symbols aligned to each other, the former to
a symbol aligned to a dash. Figure 4 shows the pair
HMM used in our work. The match state M emits
pairs of aligned characters, state X emits characters
only in the first sequence, and state Y emits charac-
ters only in the second sequence. Given two sequences,
we can find the most probable state path that could
generate them and this will give us an alignment of
these two sequences.

To represent a typical sequence of a motif, we will
use another kind of HMMs, called profile HMMs [4].
A profile HMM is typically constructed based on an
alignment of several motif instances, such as the one
in Figure 3. Each position of the motif is represented
by one state with emission probabilities set to the ob-
served frequencies of amino acids in the corresponding
alignment column (possibly with some pseudocounts
added to avoid zero probabilities). These so called
match states are arranged in a chain (see Figure 5).
These states used alone would generate sequences of
the same length. However, real sequences may have
various insertions and deletions compared to the con-
sensus motif; these are modeled by additional insert
and delete states. Given a profile HMM and a se-
quence, we can again find the most probable state
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Fig. 4. A pair HMM for global alignment. Transition prob-
abilities are defined by three parameters δ, ε, τ , emission
probabilities by matrices p and q.

path, which in this case gives us an alignment of the
sequence to the motif represented by the profile HMM.
Note, however, that the profile HMM emits only a sin-
gle sequence; the motif itself is represented directly in
the structure and parameters of the model.

Fig. 5. Example of a profile HMM. States Mk are match
states, Ik are insert states and Dk are delete states. States
B, E, and D1 . . . D3 are silent, which means that they do
not generate any characters.

1.2 MotifAligner Approach

To obtain high quality alignments even on sequences
with highly variable number of zinc finger motifs, Now-
ick et al. developed a pairwise alignment tool called
MotifAligner [11]. To our knowledge, it is the only se-
quence alignment method designed specifically to align
sequences with variable number of repetitive motifs.
Part of our work was inspired by this algorithm.

MotifAligner first uses a profile HMM tool HM-
MER [5] and finds all canonical motif occurrences with
statistically significant scores in both input sequences.
Let T = (t1, . . . , ta) and U = (u1, . . . , ub) be the se-
quences of all motif occurrences found by HMMER
in the original input sequences x and y, respectively.
In the second step, MotifAligner computes scores of
all gapless pairwise alignments of motifs tk, u`, for all

1 ≤ k ≤ a, 1 ≤ ` ≤ b:

s[tk, u`] =

L∑
i=1

S[tki
, u`i ], (1)

where S[xi, yj ] is the score of aligning amino acids xi
and yj (they use a standard BLOSUM85 substitution
matrix [8]; motif occurrences are padded to have the
same length).

In this way we obtain a similarity score between
each pair of motif occurrences. Next MotifAligner ap-
plies the Needleman-Wunsch algorithm [10] to T and
U , treating motifs as sequence symbols and using ma-
trix s as the substitution matrix. In this way we obtain
pairs of aligned zinc fingers between the two proteins.

2 Profile-Profile-Pair Alignment

In this section, we present a new approach to align-
ment of sequences with repetitive motifs. We adopt an
approach similar to MotifAligner, however, we change
the alignment algorithm and the scoring scheme to
take into account the structure of the repeated motif.

For example, the zinc-finger motif (Fig. 2) contains
several highly conserved positions, among them the
four amino-acids binding the zinc ion (positions 3, 7,
20, 24). These four amino acids are crucial to the func-
tion of the motif and as such should be used to anchor
the whole alignment. However, the fact that these po-
sitions match in the two aligned sequences should not
be very surprising and should not by itself contribute
much to the resulting score. On the other hand, there
are several variable positions, and the differences at
these positions will be very informative of the evolu-
tionary distance.

Fig. 6. The profile HMM of random 2000 human zinc fin-
gers from the complete dataset, viewed as a HMM logo
[15].

To take these issues into account, we have devel-
oped a new profile-profile-pair method (PPP) for align-
ment of individual motifs. The method uses a combi-
nation of two profile HMMs and a pair HMM for se-



quence alignment and aligns the two sequences by find-
ing the best possible path through all three models si-
multaneously. To align the complete protein sequences
containing these repeating motifs, we first align each
possible pair of motifs through PPP, compute their
similarity score, and use a modification of a traditional
global alignment algorithm, now operating on individ-
ual motif occurrences as a unit. We describe the details
of the method in the remainder of this section.

2.1 Pairwise Alignment of Individual Motifs

The input to PPP consists of two instances of the re-
peating motif x = x1 . . . xLx and y = y1 . . . yLy , a pro-
file HMM encoding the same motif, and a pair HMM
characterizing the properties of a typical alignment.
Our goal is to align both x and y to a separate copy of
profile HMM and at the same time, use the pair HMM
as a glue.

In particular, we are simultaneously seeking the
three paths through the three HMMs that satisfy the
following constraints:

Constraint 1 (Profile match states constraint)
If xi and yj are emitted by the same match state Mk

in their profile models then the pair model has emit xi
and yj together in the match state M .

Constraint 2 (Pair match state constraint) If the
pair model emits xi and yj together in the match state
M then both profile models emit xi and yj in the same
match state Mk or in the same insert state Ik.

In other words, if the pair model is in the state
X or Y (which is interpreted as a gap in one of the
sequences), the two profile models should not be in
the same match state: symbols belonging to the same
consensus column should be aligned. However, if both
profile models are in the same insert state they can
either be evolutionarily related, in which case they
should be aligned using M state of the pair model,
or they could have been inserted in the sequence in-
dependently, which would correspond to using X and
Y states of the pair model. Constraint 2 also implies,
that if the profile models are neither in the same match
state Mk nor in the same insert state Ik (i.e. either are
in completely different columns or in the same column
k, but different states Mk and Ik), which means that
the symbols being emitted are unrelated, then the pair
model should not be in the match state. These con-
straints thus ensure that the sequence and the profile
alignment can be interpreted in a consistent manner.

Thus our goal is to compute three paths s∗p, s
∗
x, s

∗
y

through the pair HMM and the two profile HMMs
that would satisfy our constraints and the product of

joint probabilities implied by all three models would
be maximized:

(s∗p, s
∗
x, s

∗
y) = arg max

valid
sp,sx,sy

score(x, y, sp, sx, sy), (2)

where score(x, y, sp, sx, sy) = Ppair(x, y, sp)·
Pprofile(x, sx) · Pprofile(y, sy), where Ppair(x, y, s) is the
joint probability of the state path s aligning sequences
x and y in the pair HMM and Pprofile(x, s) is the joint
probability of the state path s and sequence x in the
profile HMM.

We obtain an optimal solution using dynamic pro-
gramming similar to the Viterbi algorithm used to
compute the most probable state paths in individual
HMMs. Let S = (Sp, Sx, Sy) be the triplet of states
of pair and x-profile and y-profile models satisfying
our conditions. We denote V [Sp, Sx, Sy, i, j] the score
of the highest scoring state path combination ending
with the triplet S and covering the prefixes x1 . . . xi,
y1 . . . yj of the two sequences.

The computation of V [Sp, Sx, Sy, i, j] depends on
the types of states Sp, Sx, Sy. For example, if Sp is the
match state M of the pair HMM and Sx is the match
state Mk of the profile HMM, then according to our
constraints Sy must be the same match state Mk and
we have the following recurrence:

V [M,Mk,Mk, i, j] = eM (xi, yj)eMk
(xi)eMk

(yj)·

max



tMM tM`Mk
tM`Mk

· V [M,M`,M`, i− 1, j − 1]
for 0 ≤ ` < k

tMM tIk−1Mk
tIk−1Mk

· V [M, Ik−1, Ik−1, i− 1, j − 1]
tXM tM`Mk

tMnMk
· V [X,M`,Mn, i− 1, j − 1]

for 0 ≤ `, n < k, n 6= `
tXM tM`Mk

tIk−1Mk
· V [X,M`, Ik−1, i− 1, j − 1]

for 0 ≤ ` < k
tXM tIk−1Mk

tM`Mk
· V [X, Ik−1,M`, i− 1, j − 1]

for 0 ≤ ` < k
tXM tIk−1Mk

tIk−1Mk
· V [X, Ik−1, Ik−1, i− 1, j − 1]

tYM tM`Mk
tMnMk

· V [Y,M`,Mn, i− 1, j − 1]
for 0 ≤ `, n < k, n 6= `

tYM tM`Mk
tIk−1Mk

· V [Y,M`, Ik−1, i− 1, j − 1]
for 0 ≤ ` < k

tYM tIk−1Mk
tM`Mk

· V [Y, Ik−1,M`, i− 1, j − 1]
for 0 ≤ ` < k

tYM tIk−1Mk
tIk−1Mk

· V [Y, Ik−1, Ik−1, i− 1, j − 1]

The value at V [M,Mk,Mk, i, j] has to include the
emission probabilities of xi and yj in all three models.
Then we take a maximum over all choices of previous
cells from which the current cell value could be com-
puted. Every value considered in the maximum is the
product of the value of the predecessor cell and tran-
sition probabilities in all three models. All the other



cases can be derived analogously; we omit the deriva-
tions due to the space constraints.

Every time we compute a value for any cell, we keep
a pointer to the cell from which the value was derived.
We use those pointers later to trace back the resulting
state paths. Of particular importance is the path in
the pair model, since it defines the alignment of x and
y. For each of the resulting state path, we also compute
its joint probability its respective model, obtaining val-
ues Ppair(x, y, s

∗
p), Pprofile(x, s∗x), and Pprofile(y, s∗y).

2.2 Alignment of Complete Motif Arrays

We use the same procedure as MotifAligner for align-
ment of complete motif arrays. We compute all pair-
wise alignments of individual motifs, where the score
of a pairwise motif alignment is based on joint proba-
bilities of motif sequences and state paths in all three
models as described below. Since we perform the mo-
tif alignment for all pairs of motifs and assign a score
to each such alignment, we get a scoring system simi-
lar to a scoring matrix. Treating motifs as symbols and
using this scoring matrix, we obtain the full alignment
of input motif arrays using Needleman-Wunsch algo-
rithm.

More formally, for motif arrays Ax = (x1, . . . , xn)
and Ay = (y1, . . . ym), we calculate n × m matrix S,
where

S(xi, yj) = ln
Ppair(xi, yj , s

∗
p,i,j)

Pprofile(xi, s∗x,i,j)Pprofile(yj , s∗y,i,j)
, (3)

where s∗p,i,j , s
∗
x,i,j and s∗y,i,j are the three state paths

computed when aligning motifs xi, yj by PPP. This
score compares the hypothesis that the two motif se-
quences are related (given by probability from the pair
HMM) to the hypothesis that these are simply two
independent sequences following the same profile (as
determined by scores from the two profile HMMs).

2.3 Algorithm Complexity

The time complexity of the PPP algorithm on two
motif arrays with O(n) motifs, each of length O(m)
is O(n2m6). There are O(n2) individual motif align-
ments. The time needed to compute one such align-
ment is O(LxLyL

4), where Lx, Ly are the lengths of
motifs and L is the number of columns in the pro-
file HMM. This follows from the observation that in
the recurrent step of individual motif alignment we
fill 3× L× L× Lx × Ly matrix, and time required to
compute each cell is at most O(L2), the upper bound
on the number of values considered in the recurrence.
Typically, the number of columns in the profile HMM
and the length of motifs is almost the same, so we

Table 1. The complete dataset, based on genes from the
whole human genome. One gene can have multiple variants
that differ in organization of zinc fingers.

Number of Finger Motifs
Genome Genes Variants Total Average Median

hg19 612 1071 13363 12.48 12
mm9 302 513 5226 10.19 10
canFam2 477 828 9259 11.18 11
rheMac2 578 1010 12143 12.02 12

can say that Lx, Ly, L = O(m) and hence the time re-
quired to compute the alignment of one motif pair is
O(m6). From the same observation, one can easily see
that the space complexity is O(n2 +m4). The running
time and memory is practical, since values of n and m
tend to be small in real proteins (for zinc-finger arrays,
both n and m are less than 30).

3 Experiments and Evaluation

Gold standard data set. We evaluated our approach
on human zinc-finger genes and their counterparts in
related species macaque, mouse, and dog. We down-
loaded the set of annotations of KRAB zinc finger
genes from the Human KZNF Catalog [9] and remapped
the annotation to the current human genome assem-
bly hg19 using liftOver tool. To obtain the sequences
of these zinc finger genes in other species, we used
the whole genome alignments from the UCSC genome
browser [17] as a mapping between the human (hg19)
and the macaque (rheMac2), mouse (mm9), and dog
(canFam2) genomes.

The resulting genomic sequences were translated
into amino acid sequences and cleaned for apparent
artifacts. In particular, we removed genes that con-
tained fingers shorter than 10 amino acids. Summary
statistics of the resulting dataset is shown in Table 1.
Because of relatively high time complexity of the PPP
algorithm, alignment of genes with high number of fin-
gers takes a lot of time. For that reason, we prepared
a subset of the complete dataset, omitting genes from
human chromosome 19 and their putative orthologs in
other genomes. These genes contain the highest num-
bers of repeating motifs (30 or more). Summary statis-
tics for this restricted dataset are shown in the Table 2.

Model parameters. The emission probabilities of the
pair HMM used in our experiments were based on the
BLOSUM85 substitution matrix. This particular ma-
trix was chosen in order to compare our results to Mo-
tifAligner [11]. In particular, we used the probability
distributions p and q from which the matrix was de-
rived, as supplied in EMBOSS software package [13].
The transition probability parameters (see Figure 4)



Table 2. The restricted dataset, omitting genes from hu-
man chromosome 19 and their orthologs.

Number of Finger Motifs
Genome Genes Variants Total Average Median

hg19 323 510 5249 10.29 9
mm9 201 314 2818 8.97 8
canFam2 257 406 3710 9.14 8
rheMac2 305 484 4766 9.85 9

were set as follows: τ = 0.0345, so that the expected
length of an alignment is 28, which is the length of a
typical human C2H2 zinc finger motif; δ = 0.05185 so
that the expected length of a match region is 13.45,
because the most variable region of a zinc finger motif
spans positions 12-15; ε = 0.4769 so that the expected
length of a gap is 1.1.

The complete parameter set of the profile model
was acquired from the Pfam database entry for the
ZNF C2H2 family [1]. The length of the profile is 23,
which is shorter than a typical human zinc finger mo-
tif. The reason is that the model is based on a more
diverse set of sequences from various species.

3.1 The PPP Score Distribution

To compare the scoring function of the PPP model
with the scores used by MotifAligner, we created two
sets of zinc-finger motif pairs. The related set con-
tained 1000 fingers from the human genome, each paired
with the corresponding finger from macaque, mouse or
dog. The random set contained 1000 random pairs of
fingers; we assume that these fingers are on average
more distantly related to each other than paired fin-
gers in the first set.

We have computed a PPP alignment of each se-
quence pair in both samples. The score distributions
are shown in Figure 7. Both distributions resemble the
normal distribution, with mean of the related set close
to 20 and mean of the random set at around 5.

For comparison purposes, we have reimplemented
MotifAligner algorithm as described in [11]. Figure 7
shows the score distributions of the MotifAligner ap-
proach to alignment of individual motifs, based on the
BLOSUM85 substitution matrix. These score distri-
butions do not resemble the normal distribution. In
particular, the distribution for the related set has a
heavy tail, which is clearly not desirable.

The important property of the scoring scheme is
how well it is able to distinguish positive examples
from negative ones. Figure 9 shows a ROC curve, where
the related set was treated as positives and the ran-
dom set as negative examples. The classification per-
formance of the PPP is clearly better, demonstrating
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Fig. 7. Score distributions in related (left) and random
(right) datasets om PPP model.

Histogram of nowick.related[, 1]

Score

Fr
eq

ue
nc

y

−50 0 50 100 150 200

0
20

40
60

80

Histogram of nowick.unrelated[, 1]

Score

Fr
eq

ue
nc

y

−50 0 50 100 150 200

0
5

10
15

20
25

30

Fig. 8. The score distributions in related (left) and ran-
dom (right) datasets, MotifAligner approach based on the
BLOSUM85 matrix.

that our scheme is more suitable as a score for classi-
fication of paired motifs from random pairs.

3.2 Alignment Accuracy

Next we use the PPP and the simpler MotifAligner
method for scoring pairs of zinc fingers as building
blocks in the whole motif array alignment. The Needleman-
Wunsch algorithm for the whole motif array alignment
has three parameters: the gap opening penalty g, the
gap extension penalty e, and the substitution matrix
s that scores individual motif alignments. For Moti-
fAligner, we have used the original parameters [11],
in particular the BLOSUM85 substitution matrix and
the gap penalties set to g = 84 and e = 75.6. In the
PPP model, the matrix s is determined by the equa-
tion 3, and we have tested several different settings of
the parameters g and e.

We carried out three tests. In the first one, we
aligned all zinc finger arrays of orthologous proteins in
the complete dataset. The second and the third experi-
ments simulated a loss of fingers during the evolution—
we created two artificial datasets with 1/5 and 1/3 of
the total number of fingers removed in each zinc finger
array in all four genomes, and we aligned the original
human dataset with the four reduced sets.

In our tests, we achieved the best results when the
gap opening penalty g was set to 30 and the gap exten-
sion penalty e to 20. The results of all tests are shown



T
ru

e
Po

si
ti

ve
R

at
e

False Positive Rate

PPP
MotifAligner

Fig. 9. ROC curve for related (positive) and random (neg-
ative) datasets.

Table 3. The comparison of MotifAligner and PPP model.
PPP1 refers to Needleman-Wunsch gap penalty parame-
ters set to g = 30, e = 20 and PPP2 to g = 20, e = 10.
The third column lists the number of different zinc fin-
ger array pairs aligned; fourth column lists the number of
wrongly aligned motifs.

Aligned Misaligned
Dataset Program arrays motifs
Complete, Unchanged MotifAligner 2161 234
Complete, Unchanged PPP1 2161 178
Complete, Unchanged PPP2 2161 331

Restricted, 1/5 Loss MotifAligner 1609 149
Restricted, 1/5 Loss PPP1 1609 139
Restricted, 1/5 Loss PPP2 1609 142

Restricted, 1/3 Loss MotifAligner 1651 169
Restricted, 1/3 Loss PPP1 1651 254
Restricted, 1/3 Loss PPP2 1651 252

in the Table 3. PPP1 was able to outperform the Moti-
fAligner on the Unchanged and 1/5 Loss datasets. On
the other hand, our model performed slightly worse as
the number of lost fingers was increased.

4 Conclusion

We have designed and implemented an algorithm for
alignment of sequences with repetitive motifs. The al-
gorithm is built on top of two types of hidden Markov
models. It utilizes positional information from two copies
of a profile HMM and uses a pair HMM to align the
motif sequences. We were able to apply our model on
real world data, and obtained better results than the
only existing program specifically designed to align se-
quences with repetitive motifs.

There is still a room for improvement of our work.
Apart from obvious upgrades, like a more efficient im-
plementation, the underlying model can be enhanced
in several ways. For example, an interesting question is
whether some other scoring function of individual mo-
tif alignments would perform better. Such a function

might be based on different properties of the under-
lying models, e.g. the full probability of a sequence,
instead of the probability of the Viterbi path.

To alleviate problems caused by the computational
complexity of the algorithm, various heuristics could
be applied, especially methods avoiding exhausting
computations of the whole dynamic programming ma-
trix. In order to apply our model to other protein fami-
lies with repeating motifs, a more robust procedure for
parameter estimation should be established. In addi-
tion, a method for assessment of statistical significance
of alignments may be helpful when computing align-
ments of large datasets where random similarities are
more likely to occur.

The model we have implemented is not the only
way of doing sequence alignment with repetitive mo-
tifs. It is very appealing to use a monolithic proba-
bilistic model instead of multiplying probabilities of
three separate models. We have tried to develop such
a model, but we were not able to overcome some of
their intrinsic difficulties.

From the practical point of view, the most serious
problem we have encountered is the lack of reliable
benchmark for assessing the accuracy of alignments
with repetitive motifs. A high quality reference is very
valuable, because it allows exact evaluation of algo-
rithms and can give a clue where are the weak and
the strong parts of a particular method, or how to
set the method parameters to ensure optimal perfor-
mance. We hope that our work will at least partially
serve as a catalyst towards the creation of such a re-
source.
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