
6 Greedy Algorithms

[BB chapter 6] with different examples or [CLRS3 chapter 16] with different approach to greedy algorithms

6.1 An activity-selection problem

Problem: We have a set of n activities A1, . . . , An – activity Ai starts at time si and finishes at time fi.
We want to participate at as many activities as possible (but activities cannot overlap).

Example: Summer camp activity selection:

9 10 11 12 1 2 3 4 5

+---+---+---+---+---+---+---+---+

<---> <-----> <-------> <->

Horseback Swi Napping Pizza

riding mming

<---> <->

Canoeing Lunch

<--->

Kayaking

9:00-10:00 Horseback riding *

10:00-11:00 Canoeing

11:00-12:30 Swimming

10:30-11:30 Kayaking *

11:30-12:00 Lunch *

1:00- 3:00 Napping *

4:00- 4:30 Pizza *

Q: Suggestions for algorithms to solve this problem?

A1: Shortest activity first

9 10 11 12 1 2 3 4 5

+---+---+---+---+---+---+---+---+

<---------------X--------------->

Morning Afternoon

canoeing canoeing

<--->

Lunch

Who needs lunch when you can canoe all day?

A2: First starting activity first

9 10 11 12 1 2 3 4 5

+---+---+---+---+---+---+---+---+

<------------------------------->

All day trip

<-----------X---X------------->

Basketball Lunch Frisbee
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A3: Activity with the smallest number of conflicts first

9 10 11 12 1 2 3 4 5

+---+---+---+---+---+---+---+---+

<---> <-----> <-----> <--->

<---> <-------> <--->

<-------> <------->

<-------> <------->

Solution: First ending activity first

Sort all activities by their finishing time

(now f[1]<=f[2]<=...<=f[n])

last_activity_end:=-infinity;

for i:=1 to n

if (s[i]>=last_activity_end) then

output activity (s[i],f[i]);

last_activity_end:=f[i];

Running time: Θ(n log n)

Note:

• All previous examples correct

• There can be more than one optimal solution

Proof of correctness.

Assume without loss of generality:

• Activities are sorted by their finishing time, i.e. f1 ≤ f2 ≤ . . . ≤ fn.

• We assume all solutions in the text below are sorted in the same order.

Lemma 1. Assume the greedy solution selected activities G = (G1, . . . , Gk). Then for any 0 ≤ l ≤ k there
exists an optimal solution of the form O = (G1, . . . , Gl, Ol+1, . . . , Om).

Proof. Proof by induction on l.

Base case. If l = 0 then the statement holds trivially.

Induction step. Assume that the statement holds for l. Therefore there exists an optimal solution O =
(G1, . . . , Gl, Ol+1, . . . , Om).

Note that:

• sOl+2
≥ fOl+1

(because O must be a correct solution of the activity selection problem),

• fGl+1
≤ fOl+1

(because, otherwise, Ol+1 would have been chosen by the greedy algorithm).

Therefore Gl+1 can be substituted for Ol+1 in the solution O, yielding solution O′. Solution O′:

• is of the same size as O (therefore it is optimal),

2



• agrees with G on at least l + 1 first activities

Thus the statement holds for l + 1 as well.

Theorem 1. The greedy algorithm always finds an optimal solution.

Proof. Using previous lemma for l = k, we know that there exists an optimal solution of the form

O = (G1, . . . , Gk, Ok+1, . . . , Om).

Assume that m > k. Then this means that starting time sOk+1
≥ fGk

; but Ok+1 would be added to G by
the algorithm. Contradiction.

6.2 Greedy algorithms – summary

Approach we have taken to solve the activity selection problem is, in general, called greedy.

Outline of typical greedy algorithm.

• Every solution can be obtained by series of choices.
e.g.: choice of activities in activity selection problem

• But not all choices lead to an optimal solution.
e.g.: some sets of activities are smaller than the optimal set; not all sets of activities can be extended
to an optimal set

• In each step:

– Consider all options for the current choice.
e.g.: what activity to choose next?

– Weight the options by a weighting function .

e.g.: finishing time of the activity

– Take the option which has the largest weight
(or: choose whatever seems best right now)
e.g.: choose activity with the smallest finishing time

The most challenging part is to prove that a greedy algorithm yields an optimal solution.
(Remember: usually there can be more than one optimal solution.)

Outline of typical proof. (one possible way)

Lemma Template 1. Assume the greedy algorithm gives the solution G.
There exists an optimal solution which agrees with G on first k choices.

Proof. By induction on k.

Base case. For k = 0 – any optimal solution will do.
(Who could make a mistake when presented with no choice?)

Induction step. (Assume we did not make mistake in first k choices; show that (k + 1)st choice was OK
as well.)

• Assume that there exists an optimal solution OPT which agrees with the greedy solution on first
k choices.
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• Create a new solution OPT ′ such that:

– OPT ′ has the same value as OPT (and therefore is optimal as well)

– It agrees with G on one more (k + 1)st choice.

Points to take home:

• Greedy algorithms are usually simple to describe and have fast running times (Θ(n) or Θ(n log n)).

• The hard part is demonstrating that the solution is optimal.

• This can be often done by induction: “change” any optimal solution to the greedy one without changing
its cost.

6.3 Huffman codes

Binary prefix codes. Assume we have an alphabet of four characters: a, b, n, s. Let us represent these
characters in binary code as follows:

a 00

b 01

n 10

s 11

bananas 01001000100011 (14 bits)

Binary tree representation: leaves = characters
of the alphabet; path to a leaf = binary code for
the character

0 1

0 1 0 1

a b n s

Q: Must all leaves have the same depth?

A: No!

0 1

0

0

b s

1

1

a

n

Encoding: For each character locate corre-
sponding leaf and follow the path, adding 0s
when going left and 1s when going right.
bananas 0001011011001 (13 bits - wow!)

Decoding: Start from the root of the tree,
when you see 0 go left, when you see 1 go right,
when you enter leaf write-out the letter and start
from the root again.

Note: Binary codes that can be represented by a tree are called prefix codes (code of any character cannot
be a prefix of code of any other character).

Idea: For a given string, different trees give a different length of the encoding. Thus by choosing a proper
tree we can compress the string.
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Problem: Given a string S = s1s2 . . . sm over alphabet Σ (|Σ| = n), find a prefix code (i.e. binary tree)
that yields the shortest encoding of the string.

(Such a tree is called Huffman’s tree)

Notation:

• Frequency f(x) of a character x in string S is the number of characters x occurring in string S.

• We can extend this to a frequency of a subtree C of the tree T :

f(C) =
∑

x is a leaf in C

f(x)

• Let depthT (x) be the depth of a leaf x in a tree T .

• Weight w(T ) of a tree T is the length of the encoding of string S using tree T (in bits):

w(T ) =
m∑
i=1

depthT (si) =
∑
x∈Σ

f(x)depthT (x)

• We can extend this to a weight of a subtree C of the tree T :

w(C) =
∑

x is a leaf in C

f(x) · depthC(x)

Observation: The characters which occur less often should be located deeper in the tree.

Greedy algorithm:

Compute frequencies of all characters in S

F:=empty-forest;

for all characters x in the alphabet do

T:=new leaf(x);

add T to F;

while F contains more than one tree do

T1:=extract tree with minimum frequency from F;

T2:=extract tree with minimum frequency from F;

T:=new tree where T1 is a left child

and T2 is a right child;

add T to F;

return F;
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Example:

bananas:

x f(x)

-----------

b 1

a 3

n 2

s 1

0 1

0 1

b (1) s (1)

(2)

n (2)

a (3)0 1

(4)

(7)

Proof of correctness.

Lemma 2. Let F = (T1, T2, . . . , Tk) is a forest obtained by the greedy algorithm after i steps. Then there
exists an optimal coding tree which contains T1, T2, . . . , Tk as subtrees.

Note: From the lemma: after n− 1 steps of the greedy algorithm we obtain an optimal tree.

Proof. By induction on i.

Base case. After 0 steps, we have a forest composed of singleton vertices – the lemma holds trivially.

Induction step.

• Assume that after i steps the greedy algorithm has a forest F = (T1, T2, . . . , Tk).

• From IH we can assume that there exists an optimal tree OPT which contains all T1, . . . , Tk as
subtrees.

• Without loss of generality, we can assume that these trees are labeled in the following way:

– Trees T1 and T2 are the trees that are subsequently chosen in step i+1 of the greedy algorithm
and combined into a new tree T ′. Consequently, for all j ≥ 3, f(Tj) ≤ f(T1) and f(Tj) ≤
f(T2).

– In OPT, tree T2 is the one that is positioned deeper or in the same depth as T1.

(Note that this can be easily achieved by simpy relabeling the trees.)

Now, let us compare the tree OPT with the the subtrees (T ′, T3, . . . , Tk).

• If T1 and T2 are siblings in OPT we are done (T ′ is a subtree of OPT and thus the lemma holds
for i + 1 steps as well).

• Otherwise: T2 must have a sibling subtree B. Exchange T1 and B, as on the picture, yielding
new tree OPT ′:

T1

B T2

d1 d2

T2

d1 d2

T1

B
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Note:

– Contribution of a leaf x to the weight of the tree T is depthT (x) · f(x).

– Contribution of a subtree T1 to the weight of the tree T is:∑
x is a leaf in T1

depthT (x) · f(x) = d1 · f(T1) + w(T1)

Weight before (i.e., weight of OPT ):

BEFORE = d1f(T1) + w(T1) + (d2 + 1)f(B) + w(B) + (d2 + 1)f(T2) + w(T2) + REST

Weight after (i.e., weight of OPT ′):

AFTER = d1f(B) + w(B) + (d2 + 1)f(T1) + w(T1) + (d2 + 1)f(T2) + w(T2) + REST

Difference:

w(OPT ′)− w(OPT ) = AFTER − BEFORE = (f(B)− f(T1))(d1 − (d2 + 1))

Note:

– T1, . . . , Tk contain all leaves; therefore B is either one of T3, . . . , Tk or it contains one of them
(because OPT contains T1, . . . , Tk as subtrees).

– Thus for some j ≥ 3: f(B) ≥ f(Tj) ≥ f(T1)

– Since T2 was deeper or in the same depth in OPT than T1, d2 + 1 ≥ d1.

– Thus: AFTER − BEFORE ≤ 0

If AFTER − BEFORE < 0, that would mean that cost of OPT ′ would be better than cost of OPT .
That would contradict the assumption that OPT is the optimal tree. Therefore AFTER = BEFORE ,
the tree OPT ′ has the same cost as OPT and thus is an optimal tree that contains (T ′, T3, . . . , Tk)
as subtrees, which shows that the lemma also holds after i + 1 steps of the algorithm.

How long does it take? Depends on the implementation of the “forest” data structure:

• list of trees: Θ(m + n2)

• priority queue: Θ(m + n log n)

6.4 Aside: Text compression and Lempel-Ziv-Welch (LZW) compression algo-
rithm

In compression, we do not want to create a specific output for a given input. Instead we want to provide a
pair of algorithms:

• Compression algorithm. Encodes a given input string S into a compressed string C(S), which is
preferrably shorter than string S.

• Decompression algorithm. For every valid compressed string C(S), recover the original string S.
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Can we always compress a string to 80%? No!

• There are much fewer strings of length 0.8n than strings of length n. Therefore, if we compressed all
the strings of length n to length 0.8n, there would have to be some strings that share the same code,
i.e. strings S1 6= S2 for which C(S1) = C(S2). But then, we cannot decompress those strings!

• If we could compress every string to 80%, then there is nothing to stop us to use the compression again
on compressed strings, giving us even better compression rate of 64%. We can apply compression again
and again, until we end up with a single bit. . .

Lempel-Ziv-Welch compression is based on replacing variable length substrings of the original string
with fixed length code words. Typically, these code words are 12-bits long (i.e., numbers between 0 and
4095), and the compressed text is simply a sequence of these code words.

Note: If we simply designate a single 12-bit code word to each character of 7-bit ASCII code, and simply
replace the characters with these code words, we would increase the size of the resulting file by more than
70%. Therefore, the algorithm relies on replacing longer and longer strings with single code word.

If we replace pair of characters with a single code, we have compressed this pair to ≈ 85%. However,
there is space only for less than 1/4 of all pairs of characters. Similarly, replacing triple of characters with a
single code gives us compression ratio ≈ 67%, however we can store only 0.2% of all triples in the dictionary.
Therefore, choosing a good dictionary is crucial for the performance.

In LZW compression, we are building the dictionary on a fly so that it can be reconstructed even if
we only have the compressed string. The algorithm is heuristic—the strings which occur more often will
eventually be included in the dictionary.

Compression algorithm.

LEMPEL-ZIV-WELCH-COMPRESS:

create empty dictionary D;

// dictionary D will map strings to number 0,1,...,4095

// initialize dictionary D with all characters from the alphabet

dsize := 0;

for all symbols s in alphabet

D.insert(s,dsize);

dsize := dsize + 1;

// process the input

while there is more characters on the input

s := longest prefix from input

such that s is in D (*)

output D.search(s);

c := peek next character from input

D.insert(s+c,dsize);

dsize := dsize + 1;

Example:

COCOA_AND_BANANAS

Alphabet: _,A,B,C,D,N,O,S
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0 1 2 3 4 5 6 7

Longest Output Entry in Dictionary

prefix code dictionary number

C 3 CO 8

O 6 OC 9

CO 8 COA 10

A 1 A_ 11

_ 0 _A 12

A 1 AN 13

N 5 ND 14

D 4 D_ 15

_ 0 _B 16

B 2 BA 17

AN 13 ANA 18

ANA 18 ANAS 19

S 7 -- --

Therefore, the compressed string is: 3, 6, 8, 1, 0, 1, 5, 4, 0, 2, 13, 18, 7

What do we do when we run out of codewords?

• stop adding new strings in the dictionary

• or: clear the dictionary and start building it anew

(but we must do the same thing in both compression and decompression algorithms)

Decompression algorithm. Decompression algorithm works similarly as the compression algorithm: it

builds the same dictionary as the compression algorithm, and thus is able to decompress the string.

LEMPEL-ZIV-WELCH-DECOMPRESS: (bad version)

create empty dictionary D

// initialize dictionary D with all characters from

// the alphabet

dsize := 0;

for all symbols s in alphabet

D.insert(dsize,s);

dsize := dsize + 1;

// process the compressed sequence

code := next code from the input

s := D.search(code)

output s

while there are more codes on the input

lasts := s

code := next code from the input

s := D.search(code);

output s;
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// inv: lasts is the string corresponding to the last code word

// s is the string corresponding to the current code word

// build dictionary

D.insert(dsize,lasts+s[1]);

dsize := dsize + 1;

Example:

Alphabet: _,A,B,C,D,N,O,S

0 1 2 3 4 5 6 7

3 6 8 1 0 1 5 4 0 2 13 18 7

Decoded Entry in Dictionary

Code string dictionary number

3 C -- --

6 O CO 8

8 CO OC 9

1 A COA 10

0 _ A_ 11

1 A _A 12

5 N AN 13

4 D ND 14

0 _ D_ 15

2 B _B 16

13 AN BA 17

18 ????

We have got number 18, but it is not in the dictionary yet! How can we decode it?

Special case: Let as assume, that word Kw (where K is a character, and w is some string) is in the
dictionary, and we have to compress word KwKwK. Then and only then during the compression:

• we insert KwK into the dictionary

• we use it immediately in the next step of the compression algorithm

However, you can observe from the examples, that even though the decompression algorithm is building the
same dictionary, as the compression algorithm, this process is delayed by one step in decompression, and
therefore the code of word KwK is not available during decompression when it is needed.

Since we know, that this is the only such example, this problem is easily solved: if we encounter an
unknown code, and the previously used code word expanded to the string of the form Kw, then the next
code word must expand to the string of the form KwK.

LEMPEL-ZIV-WELCH-DECOMPRESS: (correct version)

create empty dictionary D

// initialize dictionary D with all characters from

// the alphabet

dsize := 0;

for all symbols s in alphabet

10



D.insert(dsize,s);

dsize := dsize + 1;

// process the compressed sequence

code := next code from the input

s := D.search(code)

output s

while there are more codes on the input

lasts := s

code := next code from the input

** if code = dsize then s := lasts + lasts[1];

** else s := D.search(code);

output s;

// build dictionary

D.insert(dsize,lasts+s[1]);

dsize := dsize + 1;

Now we can finish the example:

Alphabet: _,A,B,C,D,N,O,S

0 1 2 3 4 5 6 7

3 6 8 1 0 1 5 4 0 2 13 18 7

Decoded Entry in Dictionary

Code string dictionary number

3 C -- --

6 O CO 8

8 CO OC 9

1 A COA 10

0 _ A_ 11

1 A _A 12

5 N AN 13

4 D ND 14

0 _ D_ 15

2 B _B 16

13 AN BA 17

18 ANA ANA 18 !!!

7 S ANAS 19

Implementing LZW compression.

• for decompression: there is nothing special (use a simple array with indexes [0..max] for D)

Running time: can be done in O(n)

• for compression: we need to extend dictionary to support quickly the following operation:

s := longest prefix from input

such that s is in D (*)
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Typical solution: hash table with hash function that allows adding one character at a time (similar to
shifting in Rabin-Karp)

Less typical solution: tries (usually requires more memory)

Running time: can be done in O(n) (with tries)

Patent issues. The LZW algorithm not only played important role in computer science, in both software
(compression of data on file systems) and hardware (increasing speed of data transmission by compression
of data flow), but it also supplies an important story in intellectual property management (you can see more
details about this story at http://www.kyz.uklinux.net/giflzw.php):

• 1984: Scientific publication in IEEE Computer magazine Terry Welch: A Technique for High-Performance
Data Compression. US patent awarded in 1985 (so called Unisys patent)

• Shortly after scientific publication, the use of the algorithm quickly spreads:

– Unix compress (1984)

– GIF interchanged format (1987)

– compression in modems (1989) (patent license)

– postscript compression (1989) (Adobe pays license for their tools)

• Unisys waits until 1994 until GIF gets popular and then says: any developers who write software that
creates or reads GIF file format has to buy licenses of the patent from Unisys.

Developers react by creating patent-free PNG format, most users abandon use of GIFs, since developers
are removing support for the format.

• In 1995: Unisys granted royalty free license for non-commercial non-profit software. But this license
was retracted later (in 1999).

• Patent coverage finally expires (2003 in USA, 2004 in the rest of the world). Now everybody can use
the LZW compression legally again.

According to US constitution, the main purpose of patents is to “promote the progress of science and
useful arts”, and “securing for limited times to authors and inventors the exclusive right to their respective
writings and discoveries” is only means of achieving this goal. Do you think that Unisys patent contributed
to progress in computer science?

6.5 Coin changing

Problem 1: Coin changing in European coin system. Assume that we have unlimited amount of

1c, 2c, 5c, 10c, 20c, 50c, 1 euro, and 2 euro coins. Pay out a given sum S with the smallest number of coins
possible.

Solution: Greedy algorithm again – try the largest coin first.

while S>0 do

c:=value of the largest coin no larger than S;

num:=S div c;

pay out num coins of value c;

S:=S-num*c;

Time: Θ(m), where m is the number of coins.
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Proof of correctness:

Lemma 3. No optimal solution will contain more than one 1c coin, two 2c coins, one 5c coin, one 10c
coins, two 20c coin, one 50c coin, and one 1 euro coin.

Proof. If we have two 1c, 5c, 10c, 50c, or 1 euro coins, we can always replace it with one coin of higher
denomination. Three 2c coins can be replaced by 5c+1c, three 10c coins can be replaced by 20c+10c. Thus,
each of these cases would result in a better solution.

Lemma 4. Suppose the greedy algorithm gave a solution G = (g1, . . . , gk) (where g1 ≥ g2 ≥ . . . ≥ gk).
Then for any l ≤ k there exists an optimal solution of the form OPT = (g1, . . . , gl, ol+1, . . . , om) (where
gl ≥ ol+1 ≥ . . . ≥ om).

Proof. By induction on l.

Base case. For l = 0 the claim is trivial.

Induction step. Assume that the claim holds for l. Thus we may assume that there exists an optimal
solution of the form OPT = (g1, . . . , gl, ol+1, . . . , om). We claim that ol+1 = gl+1.

Assume to the contrary that ol+1 6= gl+1. Since the greedy algorithm chose the largest coin which could
be paid out at the moment, all coins ol+1, . . . , om are smaller than gl+1. If we did not use the coin gl+1, we
would have to cover this sum by smaller coins.

Case 1. gl+1 = 2 The coins ol+1, . . . , om must sum to at least 2 euros. However, it follows from Lemma
3 that the optimal solution must then contain 3 quarters, 2 dimes, and 1 nickel – but these can be replaced
by loonie and the number of coins would decrease. Contradiction.

Case 2. gl+1 = 0.25 Then the optimal solution must contain 2 dimes and 1 nickel – but these can be
replaced by quarter and the number of coins would decrease. Contradiction.

Case 3. gl+1 = 0.10 The optimal solution can contain at most 1 nickel and 4 pennies but those would not
make it for a dime. Contradiction.

Case 4. gl+1 = 0.05 The optimal solution can contain at most 4 pennies but those would not make it for
a nickel. Contradiction.

Problem 2: Paying postage. The Canadian postage stamp system currently has the following small

stamps: all values 1c-5c, 9c, 10c, 25c, 48c. Pay out a given sum S with the smallest number of stamps
possible.

The greedy algorithm does not work! Sum 18 would be paid as 10+5+3 by the greedy algorithm, but
the two 9 cent stamps is a better solution.

How to solve the coin changing in general?
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