
10 Introduction to NP-Completeness

10.1 Introduction

[GJ, 1]
So far we have discussed efficient algorithms for selected problems. In this section we will discuss problems

for which no efficient algorithm is known.
From now on we will consider

• Polynomial time algorithm is “practical”.

• Exponential and worse is “impractical”.

Consider the following problem:

Travelling salesman problem (TSP) Given is an undirected, weighted graph G = (V,E). Find a cycle
containing every vertex exactly once (tour) with the smallest possible length.

What if we cannot find a good (polynomial-time) algorithm to solve the problem?

• It would be great to prove that there exists no efficient algorithm. This is rarely feasible for “real world”
problems.

• Instead we often prove that the problem is “NP-hard”

– This does not say that it is impossible to solve the problem in polynomial time

– But many smart people tried and failed

In this part of the course we will:

• Introduce theory of NP-completeness

• Introduce the famous P = NP open problem

• Learn how to prove that a problem is NP-complete

Why is this important?

• If you know that the problem is NP-hard, you know that it is quite unlikely that you find an efficient
algorithm to solve it.

• You are justified to use other methods to cope with the problem:

– heuristics

– approximation algorithms

– integer programming

– backtracking (exhaustive search)

10.2 Optimization versus decision problems

NP-completeness theory is built for so called “decision” problems.

Optimization problem: find a an object optimizing some function.
TSP – find a tour with the smallest possible length

1

Decision problem: problem that has yes/no answer.
TSP-D – given is a value B. Is there a tour with length at most B?

Observation: If the cost function is easy to evaluate, then decision problem is no harder than corresponding
optimization problem.

For example: If we can find the minimum length of a TSP tour, then we can compare it to value of B and
thus solve the decision problem.

Note: Often the reverse is also true (i.e. if we can solve the decision problem in polynomial time then we can
solve optimization problem in polynomial time as well.

10.3 Class P (polynomial)

[BB 12.5.1 or CLRS2 34.1]
Recall what does “running time” mean?

Running time of an algorithm A is a function of the size of the input instances, where TA(n) is the largest
time required to solve instance an of size n.

Size of an instance is the number of bits needed to encode the instance.

Definition 1. Decision problem Q belongs to the class of problems P iff there exists a polynomial-time
algorithm solving problem Q.

Example 1: Recall Bentley’s problem. Is it in class P? No! It is not a decision problem!

Example 2: Reformulate Bentley’s problem as a decision problem: Given an array A[1..n] of integers and an
integer B. Is there a subarray with sum at least B? Is it in class P? Yes!

Example 3: Is the decision version of coin changing problem in class P?

• Decision version of the coin changing problem: Given are n coin denominations, sum S and number B.
Is it possible to pay out sum S with at most B coins?

• How many bits are needed to encode input? O(log n+
∑n

i=1 log ci + logS + logB)

• What is the running time of the best algorithm we know? O(nS)

• Is it polynomial in size of the input? No! Because S = 2logS . Therefore the running time is exponential!

So we are unable to prove that the problem is in P!

10.4 Non-deterministic algorithms

[BB 12.5.6]
(only defined for decision problems)
We will add the following constructs to our pseudocodes:

• accept – finish computation and answer “yes”

• reject – finish computation and answer “no”

2

• choose k between i and j – set k to a value between i and j so that the program flow gets to the
“accept” instruction in the shortest possible way (or arbitrarily, if the answer is no)

Note that we cannot implement “choose” on any regular computer.

accept
accept

accept

reject

reject

choose

choose

choose

start

reject

choose

T
im

e

Example: Non-deterministic algorithm for TSP-D (assume V = {1, 2, . . . , n}, adjacency matrix representa-
tion)

function TSP-D

visited[i]:=false for all vertices;

last_visited:=1; visited[1]:=true;

length:=0;

repeat n-1 times

choose next_visited between 1 and n;

if visited[next_visited] then reject;

//we cannot visit a single vertex twice

visited[next_visited]:=true;

length:=length+w(last_visited,next_visited);

last_visited:=next_visited;

length:=length+w(last_visited,1);

if length<=B then accept;

else reject;

Running time of non-deterministic algorithm

Accepting computation is a computation that ends by “accept” instruction

Running time of non-deterministic algorithm A on instance x is the running time of the shortest
possible accepting computation for x (undefined if x is rejected).

Running time of a non-deterministic algorithm A is a function TA(n). TA(n) is the largest running time
over all “yes” instances of size n.

Note: Non-determinism is one of the most important yet least practical concepts in computer science. It was
first introduced in formal languages (see UTI).

3

10.5 Class NP (non-deterministic polynomial)

[GJ 2.3, BB 12.5.1-12.5.2]

Definition 2. A decision problem Q belongs to the class of problems NP iff there exists a polynomial-time
non-deterministic algorithm solving problem Q.

Note:

• All problems in P are in NP (we just do not use “choose”). Therefore P ⊆ NP.

• Are there problems which are in NP but not in P?

– This is famous P
?
= NP problem

– General “hunch” is P ̸= NP (but nobody was able to prove this so far)

NP
P

10.6 Reductions

[CLRS2 34 intro, BB 12.5.2]
Before we have seen that sometimes one problem can be solved by using another problem.

Consider two decision problems A and B.

polynomial−time

reduction algorithm

polynomial−time

algorithm to decide B

α β
yes

no

polynomial−time algorithm to decide A

• If problem B can be solved in polynomial time then problem A can be solved in polynomial time

• If there is no polynomial-time algorithm to solve A then there is no polynomial-time algorithm to solve B

We have reduced problem A to problem B.

Definition 3. We say that a decision problem A is polynomially many-one reducible to problem B (A≤pB) if
there exists a function f computable in polynomial time that:

• maps every instance x of A to an instance f(x) of B and

• x is a yes-instance of A if and only if f(x) is a yes-instance of B.

Example 1: Consider Hamiltonian circuit problem:

HAM: Given an undirected graph G. Is there a tour in G passing through every vertex exactly once?

Task: Show that HAM≤pTSP-D (i.e., TSP-D can be used to solve HAM).

4

Solution: Take a graph G which is an input of HAM. We want to create an input for TSP-D problem which
is a pair (undirected graph G′,threshold). Create a complete graph G′ with the following weighting function:

• w(u, v) = 0, if (u, v) is an edge in G,

• w(u, v) = 1 otherwise.

Note, that the graph G has a tour if and only if graph G′ has a tour of total length at most 0 and thus we can
use TSP-D with input (G′, 0) to solve problem HAM.

yes

no

create (G’,0) TSP−D
G (G’,0)

HAM

Example 2: [GJ, 3.1.3] Consider the following two problems:

3-SAT: 3-Satisfiability. Consider a set of boolean variables U = (u1, u2, . . . , um) and a logical formula of
the form:

(a1,1 ∨ a1,2 ∨ a1,3) ∧ (a2,1 ∨ a2,2 ∨ a2,3) ∧ . . . ∧ (an,1 ∨ an,2 ∨ an,3),

where ai,j is either a variable ui from U or its negation ¬ui. (ai,j is called literal)
Is there an assignment of variables with values true and false so that the formula is satisfied?

Example:

• Formula
(u1 ∨ ¬u3 ∨ ¬u4) ∧ (¬u1 ∨ u2 ∨ ¬u4)

is satisfiable (for example, an assignment u1 = true, u2 = true, u3 = true, u4 = true satisfies the formula).

• Formula
(¬u1 ∨ ¬u1 ∨ ¬u1) ∧ (u1 ∨ ¬u2 ∨ ¬u2) ∧ (u1 ∨ u2 ∨ ¬u3) ∧ (u1 ∨ u2 ∨ u3)

cannot be satisfied.

VC: Vertex Cover. Given is a pair (G,K), where G = (V,E) is an undirected graph and K is a number.
Does there exist a subset of at most K vertices V ′ such that for each edge (u, v) ∈ E, either u ∈ V ′ or v ∈ V ′

(i.e., every edge is “covered” by the set V ′).

Task: Show that 3-SAT≤pVC.

In other words: We are given a formula and we want to construct a graph G so that graph G has a vertex
cover of size K if and only if the formula is satisfiable.

Construction of the graph: Construct graph G as follows:

• Type (1) For every variable ui: (2 vertices, 1 edge)

u(i)u(i)

To cover the edge, at least one of the vertices ui and ¬ui must be in the cover.

5

• Type (2) For every clause (ai,1 ∨ ai,2 ∨ ai,3)

a(i,2)a(i,1)

a(i,3)

To cover edges in the triangle, at least two of the vertices ai,1, ai,2, ai,3 must be in the cover.

• Type (3) If literal ai,j = uk then connect vertices (ai,j , uk).

If literal ai,j = ¬uk then connect vertices (ai,j ,¬uk).

Every vertex cover of this graph must have at least m+ 2n vertices.

Example: (u1 ∨ ¬u2 ∨ ¬u4) ∧ (¬u1 ∨ u2 ∨ ¬u3)
u(2) u(3) u(4)u(1) u(2) u(3) u(4)u(1)

a(2,1) a(2,3)

a(2,2)

a(1,1) a(1,3)

a(1,2)

Idea: vertex of type (1) is in the vertex cover iff the corresponding literal is true.

Lemma 1. A 3-SAT formula is satisfiable iff the graph constructed as described above has a vertex cover of
size at most m+ 2n.

Proof.

• (⇒) (If formula is satisfiable, then graph has a vertex cover of size m+ 2n)

Take assignment of variables that satisfies the formula:

• If ui = true, put ui to VC
• If ui = false, put ¬ui to VC

}
covers edges of type (1)

• For every clause:
• select one satisfied literal
• add vertices corresponding to the other two to VC

 covers edges of type (2)

– This vertex cover is of size m+ 2n

– The only edges which are possibly not covered are of type (3). An edge of type (3) can represent:

∗ satisfied literal – then it will be covered by a vertex of type (1)

∗ unsatisfied literal – it will be covered by a vertex of type (2)

• (⇐) (If graph has a vertex cover of size m+ 2n, then formula is satisfiable)

Take the vertex cover of the graph. As we have shown before:

– From each pair of vertices of type (1) at least one must be selected

– From each triple of vertices of type (2) at least two must be selected

6

This requires m+ 2n vertices in the vertex cover. Therefore

– From each pair of vertices of type (1) exactly one must be selected

– From each triple of vertices of type (2) exactly two must be selected

Let us define assignment of variables such that ui = true iff vertex cover contains vertex ui. We will prove
that this assignment satisfies the formula.

a(i,2)a(i,1)

a(i,3)

e Assume to the contrary that there exists a clause that is not sat-
isfied. Consider corresponding triple of type (2) vertices. One of
them is not in the vertex cover. WLOG assume it is ai,1. Then
edge e must be covered by type (1) vertex on its other side. But
that means that literal ai,1 is satisfied, which is contradiction.

10.7 NP-hard and NP-complete problems

[GJ, 2.6]

• We have defined relation A≤pB, which intuitively means: the problem B is harder than (or at least as
hard as) problem A

• What about problems that are hardest in NP – harder than any other problem in NP?

Definition 4. Problem Q in NP-hard iff for any problem R ∈ NP, R≤pQ. If a NP-hard problem Q is in NP,
we say it is NP-complete.

Recall

• If A≤pB and we can solve B in poly-time, then we can solve A in poly-time as well

• If somebody would solve an NP-complete problem in polynomial time, then P = NP.

• This is why proving that a problem is NP-complete automatically establishes that it would be hard to
solve in polynomial time.

SAT: SATISFIABILITY Consider a set of boolean variables (u1, . . . , um) and a logical formula f .
Problem: Is there an assignment of the variables so that f is satisfied?

Theorem 1 (Cook’s Theorem). SAT is NP-complete.

Sketch of the proof: We need to prove:

1. SAT∈NP –or–
There exists a non-deterministic polynomial algorithm solving SAT.

2. SAT is NP-hard –or–
For any problem Q in NP, Q≤pSAT

7

1. SAT∈NP

for i:=1 to m do

choose u[i] between 0 and 1; // 0 means false,

// 1 means true

evaluate formula f with assignment

(u[1],u[2],...,u[m])

if f is satisfied then ACCEPT

else REJECT

2. SAT is NP-hard Consider a problem Q ∈ NP
=⇒there is a poly-time non-deterministic algorithm solving Q

How do we express such algorithm?

• Each memory cell (register) stores number of fixed size
(registers R1, R2, . . .)

• Program is fixed and has constant number of lines
(all lines are numbered)

• At the beginning, input is stored in the first n registers
(n is the size of the input)

• Program runs for at most p(n) steps
and accesses at most first q(n) registers
(p(n) and q(n) are polynomials in n)

• Instruction set contains following instructions:

– ACCEPT

– REJECT

– GOTO m

– IF Rℓ = 0 THEN GOTO m

– CHOOSE Rl BETWEEN 0 AND 1

– basic arithmetic operations
(e.g. Rℓ := Ru +Rv, Rℓ := Ru ∗Rv)

– some mechanism for addressing any register up to q(n)
(this is somewhat complicated)

You probably would not like to program in such simple language
BUT if needed, we can program efficiently in it.

To prove Q≤pSAT, we want:

• Given a program A solving Q in poly-time and instance x = x1, x2, . . . , xn.

• Construct a large logical formula f that “simulates” program A on input x;

• A can reach ACCEPT ⇐⇒ f is satisfiable

8

Variables of the formula:

• Q[i, k] – at time i, the program is executing line k

• S[i, j, k] – at time i, register j has value k

Formula f will be a conjunction (“AND”) of several groups of smaller formulas; all of these smaller formulas
must be satisfied to satisfy f

1. “At each time i, the program is executing exactly one line.”
¬(Q[i, k] ∧Q[i, ℓ]) for all i, and k ̸= ℓ

2. “At each time i, each register contains a single value.”
¬(S[i, j, k] ∧ S[i, j, l]) for all i, j, and k ̸= ℓ

3. At time 0:

• Program is executing line 1: Q[0, 1]

• First n registers hold values x1, . . . , xn:
S[0, 1, x1] ∧ S[0, 2, x2] ∧ . . . ∧ S[0, n, xn]

• Other registers hold 0:
S[0, n+ 1, 0] ∧ S[0, n+ 2, 0] ∧ . . . ∧ S[0, q(n), 0]

4. “After p(n) time steps program has entered a line with ACCEPT command”
Q[p(n), k1] ∨Q[p(n), k2] ∨ . . .
where k1, k2, . . . are the lines containing “ACCEPT”

5. “For each time 0 ≤ i < p(n), the state of the computer changes between time i and i+1 according to the
program.”

Contents of line k Formula

ACCEPT or REJECT Q[i, k] ⇒ Q[i+ 1, k]

GOTO ℓ Q[i, k] ⇒ Q[i+ 1, ℓ]

IF Rℓ = 0 THEN Q[i, k] ∧ S[i, ℓ, 0] ⇒ Q[i+ 1,m]
GOTO m Q[i, k] ∧ ¬S[i, ℓ, 0] ⇒ Q[i+ 1, k + 1]

CHOOSE Rℓ Q[i, k] ⇒ Q[i+ 1, k + 1]∧
(S[i+ 1, ℓ, 0] ∨ S[i+ 1, ℓ, 1])

. . . and so on for other instructions

SAT is NP-hard: summary The above mentioned algorithm constructs for a given algorithm A and input
x formula f :

• Algorithm runs in polynomial time in n.

• Resulting formula is of polynomial size in n.

• f is satisfiable ⇐⇒ A accepts x

yes

no

SAT
x formula in poly−time

for program A and input x

construct boolean
f

Q:

=⇒ we proved: Q≤pSAT for any Q ∈ NP

9

10.8 How to prove other problems are NP-complete?

• We have proved that SAT is NP-complete by reducing any problem Q ∈ NP to SAT (Q≤pSAT)

• Thus if SAT can be solved in polynomial time then every problem in NP can be solved in polynomial
time.

Lemma 2. If A≤pB and B≤pC, then A≤pC (i.e., ≤p is transitive).

Proof.

yes

no
input

for B

input

for C

polynomial−time polynomial−time algorithm

to decide Cinput

for A

Polynomial−time reduction A −> C

reduction A −> B reduction B −> C

Corollary 1. If N is NP-complete problem and N≤pQ, then Q is NP-hard.

Proof. For any problem U ∈ NP, U≤pN and N≤pQ and therefore U≤pQ.

Recall: Problem Q is NP-complete iff

• Q ∈ NP, and

• Q is NP-hard.

To prove that problem Q is NP-hard we can:

1. Choose a problem N which we know is NP-complete (such as SAT)

2. Show N≤pQ:

– Give a poly-time algorithm transforming instance x of N to instance f(x) of Q

– Show: if x is a “yes” instance of N , then f(x) is a “yes” instance of Q.

– Show: if x is a “no” instance of N , then f(x) is a “no” instance of Q.
OR
if f(x) is a “yes” instance of Q, then x is a “yes” instance of N .

3. Conclude that since N is NP-complete, Q must by NP-hard.

To prove that Q ∈ NP and thus finishing the proof that Q is NP-complete we can:

4a. Design a poly-time non-deterministic algorithm that solves Q

Alternative: poly-time verification [CLRS2 34.2]

• Consider a salesperson (not a traveling one) wants to sell you a big graph, claiming it is Hamiltonian.

• You say you cannot verify that claim because no efficient algorithm for that task is known.

• The salesperson provides you with the order of vertices on the Hamiltonian cycle.

• Now you can easily verify in polynomial time that this order of vertices indeed specifies a Hamiltonian
cycle and you purchase the graph.

10

Definition 5. A verification algorithm for problem Q is a two-argument algorithm A(x, y) where

• x is an instance of a problem Q (let |x| = n)

• y is a string (called a certificate) size of which is bounded by polynomial q(n)

with the following properties:

• Running time of A is polynomial in n.

• If x is “no” instance of the problem Q, A(x, y) =“no” for every certificate y.

• If x is “yes” instance of the problem Q, there exists a certificate y such that A(x, y) =“yes”.

Example: Certificate for the HAM problem is a list of vertices in the order on the Hamiltonian cycle. Clearly,
it has polynomial size. The verification algorithm checks that the list contains each vertex of the graph exactly
once and that every two adjacent vertices are connected by an edge. If the graph is hamiltonian, the correct
list of vertices will pass the verification algorithm. For a non-hamiltonian graph no list of vertices will pass
verification.

Lemma 3. Problem Q is in NP iff there exists a verification algorithm for Q.

Proof.
(⇒) Certificate for input x is a list of all choose command choices in the shortest accepting computation

on instance x.
(⇐) Non-deterministically generate certificate and run verification algorithm.

Alternative way to prove Q ∈ NP

4b. Define a polynomial-size certificate

5b. Give polynomial-time verification algorithm

You are free to choose either of those methods (4a or 4b and 5b)

10.9 Seven basic NP-complete problems

Before proceeding with further NP-completeness proofs, we need “arsenal”of basic NP-completeness problems.
SAT Instance: Boolean formula f

Problem: Can f be satisfied?

3-SAT Instance: Boolean formula f in the form
(a1,1 ∨ a1,2 ∨ a1,3) ∧ . . . ∧ (an,1 ∨ an,2 ∨ an,3)

Problem: Can f be satisfied?

VC Instance: Graph G = (V,E); number K
Problem: Is there a set of vertices V ′ of size ≤ K

s.t. for any e = (u, v) ∈ E, u ∈ V ′ or v ∈ V ′?

HAM Instance: Graph G = (V,E)
Problem: Is there a Hamiltonian cycle in G?

TSP-D Instance: Weighted graph G = (V,E); number K
Problem: Is there a tour with length ≤ K?

CLIQUE Instance: Graph G = (V,E); number K
Problem: Does G contain a complete subgraph with ≥ K vertices?

SUBSET-SUM Instance: n numbers s1, s2, . . . , sn; target t
Problem: Is there a subset of the numbers

s1, . . . , sn with sum exactly t?

11

Example for CLIQUE: The following graph contains a clique of size 3 but not a clique of size 4.

Example for SUBSET-SUM: Consider numbers 2,3,3,5

• If t = 7, “yes” instance (2+5)

• If t = 13, “yes” instance (2+3+3+5)

• If t = 12, “no” instance

Sequence of reductions to prove NP-completeness:

SAT

3−SAT

TSP−D

BA

VC

CLIQUE

SUBSET−SUM

HAM

means reduction A to B

means reduction shown already

10.10 More NP-completeness proofs

Subset-sum is NP-complete

1. By reduction from 3-SAT

2. Want: Given a formula f = (a1,1 ∨ a1,2 ∨ a1,3) ∧ . . . ∧ (an,1 ∨ an,2 ∨ an,3),
construct an instance of SUBSET-SUM (set of numbers and target)

Idea: We will have 2 numbers for every variable – one for the case when variable is true and one for the
case when variable is false.

Target must enforce choosing exactly one of those two.

Details:

– For every variable ui create two m+ n digit numbers vi and v′i of base 10 as follows:
u1 u2 . . . ui . . . um C1 C2 . . . Cn

vi (corresponds to ui): 0 0 . . . 1 . . . 0 Ck = 1 iff ui is in clause Ck

v′i (corresponds to ¬ui): 0 0 . . . 1 . . . 0 Ck = 1 iff ¬ui is in clause Ck

– If we choose exactly the numbers corresponding to some satisfying truth assignment, we get the
following sum:

u1 u2 . . . um C1 C2 . . . Cn

1 1 . . . 1 ≥ 1 ≥ 1 . . . ≥ 1
≤ 3 ≤ 3 . . . ≤ 3

12

– Choose target:
u1 u2 . . . um C1 C2 . . . Cn

1 1 . . . 1 4 4 . . . 4

– Include for every clause the following numbers:
u1 u2 . . . um C1 C2 . . . Ci . . . Cn

si 0 0 . . . 0 0 0 . . . 1 . . . 0
s′i 0 0 . . . 0 0 0 . . . 2 . . . 0

These numbers we can use to “complete” the sum in column ci to 4 if we already have sum 1, 2, or
3.

Example: Formula (u1 ∨ ¬u2 ∨ ¬u3) ∧ (¬u1 ∨ ¬u2 ∨ ¬u3)
u1 u2 u3 C1 C2

→ v1 1 0 0 1 0
v′1 1 0 0 0 1

→ v2 0 1 0 0 0
v′2 0 1 0 1 1
v3 0 0 1 0 0

→ v′3 0 0 1 1 1

s1 0 0 0 1 0
→ s′1 0 0 0 2 0
→ s2 0 0 0 0 1
→ s′2 0 0 0 0 2

target 1 1 1 4 4

Show: If f is satisfiable then there exists a subset with sum equal to target

Proof. Take satisfying assignment and choose the subset of numbers as follows:

– vi if vi = true; otherwise v′i

– if clause Ci has

∗ 1 satisfied literal: si, s
′
i

∗ 2 satisfied literals: s′i
∗ 3 satisfied literals: si

The subset selected in this way has sum equal to target:

– For every variable we have either vi or v
′
i, therefore column ui sums to 1

– Since every clause is satisfied, column Ci sums to 4

Show: If there is a subset with sum equal target, then f is satisfiable.

Proof.

– No carry-overs between columns can occur (because every column sums to less than 10 even if we
use all numbers)

– From every pair vi, v
′
i exactly one must be in the subset (because column vi sums to 1).

Create a truth assignment as follows:

∗ ui = true if vi was chosen

∗ ui = false if v′i was chosen

13

– To achieve sum 4 in column Ci there must be some vi or v
′
i contributing to sum in this column. This

gives us a literal satisfying clause Ci.

Since each clause is satisfied, f is satisfiable.

3. Since 3-SAT is NP-complete, SUBSET-SUM is NP-hard

4b. Certificate is the subset achieving the target sum. Length of certificate is clearly polynomial in the size
of the input.

5b. Verification algorithm

– verifies that the certificate specifies a subset of the input list of numbers

– verifies that the sum of the subset is equal to the target

Steps 4b and 5b imply that SUBSET-SUM is in NP and step 3 implies it is NP-hard. Therefore it is
NP-complete.

Coin-changing is NP-complete

COIN-CHANGING (decision version) Given m coin denominations, sum S and number B. Is it possible
to pay out sum S with at most B coins?

1. Prove by reduction from SUBSET-SUM (SUBSET-SUM≤pCOIN-CHANGING)

2. Given: Instance of SUBSET-SUM s1, s2, . . . , sn, target t.

Want: set of coins, target sum S, number of coins B

Recall: In coin changing problem, each coin can be used more than once!

Coin values: Let M = max{s1, s2, . . . , sn}
For every number si create two coins ci and c′i:

value s1 . . . si . . . sm
(base 2nM) (base 2n) (base 2n) (base 2n)

ci si 0 . . . 1 . . . 0
c′i 0 0 . . . 1 . . . 0

Size of numbers ci, c
′
i:

– column “value” has log n+ logM + 1 bits,

– each other column has log n+ 1 bits.

Therefore the size of the number is polynomial in the size of the SUBSET-SUM instance.

Intuition:

– Choosing coin ci means including si in the subset

– Choosing coin c′i means NOT including si in the subset

Finish instance of COIN-CHANGING:

– number of coins B set to be n

14

– target sum S:
value s1 . . . si . . . sm

(base 2nM) (base 2n) (base 2n) (base 2n)

t 1 . . . 1 . . . 1

Show: If there exists a subset with sum t then it is possible to pay out the sum S with at most n coins.

Proof. Given the subset, choose coins as follows:

– If si is chosen, take coin ci

– If si is not chosen, take coin c′i

Observe

– we use n coins

– sum in the first column is t

– sum in every other column is 1

Show: If it is possible to pay out sum S with at most n coins, there exists a subset with sum t.

Proof. – Since we use at most n coins to pay S, there are no “overflows” between columns.

– Thus for every pair ci, c
′
i exactly one is chosen and is used exactly once (because the sum must have

1 in column si)

– Construct a subset of s1, s2, . . . , sn as follows: si is in the subset iff coin ci was chosen.

– The first column assures that the sum of the elements in the subset is t.

3. Since SUBSET-SUM is NP-complete, and SUBSET-SUM≤pCOIN-CHANGING, COIN-CHANGING is
NP-hard.

4b. Certificate: the number of coins of each denomination used to pay out the sum.

Each of these numbers is at most B and there are m of them, therefore the size of the certificate is
polynomial.

5b. Verification:

– check that the number of coins used it at most B

– check that the sum of coins used is S

We have proved that COIN-CHANGING is in NP and therefore it is NP-complete.

15

