The Asymptotic Cheat Sheet

Asymptotic notation consists of six funny symbols used to describe the relative growth rates of functions. These six symbols are defined in the table below.

$f = \Theta(g)$	f grows at the same rate as g	There exists an n_0 and constants $c_1, c_2 > 0$ such that for all $n > n_0$, $c_1g(n) \le f(n) \le c_2g(n)$.
f = O(g)	f grows no faster than g	There exists an n_0 and a constant $c > 0$ such that for all $n > n_0$, $ f(n) \le cg(n)$.
$f=\Omega(g)$	f grows at least as fast as g	There exists an n_0 and a constant $c > 0$ such that for all $n > n_0$, $cg(n) \le f(n) $.
f = o(g)	f grows slower than g	For all $c > 0$, there exists an n_0 such that for all $n > n_0$, $ f(n) \le cg(n)$.
$f=\omega(g)$	f grows faster than g	For all $c > 0$, there exists an n_0 such that for all $n > n_0, cg(n) \le f(n) $.
$f\sim g$	f/g approaches 1	$\lim_{n \to \infty} f(n)/g(n) = 1$

The \sim and Θ notations are confusingly similar; qualitatively, functions related by \sim must be even more nearly alike then functions related by Θ . The ω notation makes the table nice and symmetric, but is almost never used in practice. Some asymptotic relationships between functions imply other relationships. Some examples are listed below.

$$\begin{array}{ll} f = O(g) \text{ and } f = \Omega(g) & \Leftrightarrow & f = \Theta(g) \\ f = O(g) & \Leftrightarrow & g = \Omega(f) \\ f = o(g) & \Leftrightarrow & g = \omega(f) \end{array} \qquad \begin{array}{ll} f = o(g) & \Rightarrow & f = O(g) \\ f = \omega(g) & \Rightarrow & f = \Omega(g) \\ f \sim g & \Rightarrow & f = \Theta(g) \end{array}$$

Limits

The definitions of the various asymptotic notations are closely related to the definition of a limit. As a result, $\lim_{n\to\infty} f(n)/g(n)$ reveals a lot about the asymptotic relationship between f and g, provided the limit exists. The table below translates facts about the limit of f/g into facts about the asymptotic relationship between f and g.

 $\begin{array}{lll} \lim_{n \to \infty} f(n)/g(n) \neq 0, \infty & \Rightarrow & f = \Theta(g) \\ \lim_{n \to \infty} f(n)/g(n) \neq \infty & \Rightarrow & f = O(g) \\ \lim_{n \to \infty} f(n)/g(n) \neq 0 & \Rightarrow & f = \Omega(g) \end{array} \qquad \begin{array}{lll} \lim_{n \to \infty} f(n)/g(n) = 1 & \Rightarrow & f \sim g \\ \lim_{n \to \infty} f(n)/g(n) = 0 & \Rightarrow & f = o(g) \\ \lim_{n \to \infty} f(n)/g(n) = \infty & \Rightarrow & f = \omega(g) \end{array}$

Therefore, skill with limits can be helpful in working out asymptotic relationships. In particular, recall L'Hospital's Rule:

If
$$\lim_{n \to \infty} f(n) = \infty$$
 and $\lim_{n \to \infty} g(n) = \infty$, then $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$.

Every computer scientist knows two rules of thumb about asymptotics: logarithms grow more slowly than polynomials and polynomials grow more slowly than exponentials. We'll prove these facts using limits.

Theorem. For all $\alpha, k > 0$:

$$(\ln n)^k = o(n^\alpha) \tag{1}$$

$$n^k = o((1+\alpha)^n) \tag{2}$$

Proof.

$$\lim_{n \to \infty} \frac{(\ln n)^k}{n^{\alpha}} = \left(\lim_{n \to \infty} \frac{\ln n}{n^{\alpha/k}}\right)^k \stackrel{*}{=} \left(\lim_{n \to \infty} \frac{1/n}{(\alpha/k)n^{\alpha/k-1}}\right)^k = \left(\lim_{n \to \infty} \frac{1}{(\alpha/k)n^{\alpha/k}}\right)^k = 0$$
$$\lim_{n \to \infty} \frac{n^k}{(1+\alpha)^n} = \left(\lim_{n \to \infty} \frac{n}{(1+\alpha)^{n/k}}\right)^k \stackrel{*}{=} \left(\lim_{n \to \infty} \frac{1}{(n/k) \cdot (1+\alpha)^{n/k-1}}\right)^k = 0$$

The starred equalities follow from L'Hospital's Rule.