


for i := 0 to n-m
valid := true;
for j := 1 tom
if P[j] !'= T[i+j]

valid := false; break loop

if (valid) then output shift i



Rabin-Karp(T[1..n],P[1,,m]):
hashp = hash(P,1)
hasht = hash(T,1)

for 1:=0 to m-n
// inv: hasht = hash(T,i+1)
if (hashp = hasht)
// check whether T[i+l1..i+m] matches the pattern
valid = true
for j =1 tom
if P[j]1 '= T[i+j]
valid = false; break loop
if valid then output 1
hasht = shift_hash(T,i+1,hasht)



— velkost abecedy: k
— hasovacia funkcia: (S[i]S|i + 1]...S5[i +m — 1]) mod q
— predpoéitana hodnota: ktmml1 = k™! mod ¢

hash(S,1i):
// compute hash of S[i]S[i+1]...S[i+m-1]
result = 0O
for j = 0 to m-1
result = (k * result + S[i+j]) mod q

return result

shift_hash(S,i,oldhash):
// compute hash of S[i+1]S[i+2]...S[i+m]
// given that oldhash is a hash of S[ilS[i+1]...S[i+m-1]
return ((oldhash + q - (S[i]*ktmml mod q))
* k + S[i+m]) mod q



o 1 2 3 4 5 6 7 8 9 10 11

T: b a n a n a n o b a n o

1=10: X



DFA_STRING_MATCHING(T[1..n],tr):
state:=0;
for i:=1 to n
state:=tr[state,T[i]]
if (state = m)
output shift i-m



for i := 0 tom

prefix := P[1..i];

for all symbols ¢ from the alphabet
current := prefix + c;
for j := i+1 downto O
if current[i+1-j+1..i+1] = P[1..j]
trli,c] := j;
break the loop



KMP_STRING_MATCHING(T[1..n],pi):

// P[m+1] = some character outside alphabet
state := 0
for 1 :=1 ton

while state>0 and T[i]<>P[state+1]
state := pil[state]

if T[i] = Plstate+1]
state := state + 1

if state = m

output shift i-m



for all values of q such that
P[1...ql is suffixo-prefix of P[1...i-1]:
(the values are listed from largest to the smallest)
if P[gq+1]=P[i] then
pili] :=q+1;
break loop;

vypis vSetky sufixo-prefixy retazca P|1..i]:
q:=1;
while g>0

q:=pi[q]
print P[1..q]



CONSTRUCT _PREFIX_FUNCTION(P[1.

pi[0] :=0;
for i:=1 tom
q:=i-1; pilil:=0
while q > O
q:=pilq]l
if P[q+1]1=P[i] then
pili] :=q+1;
break loop;

10

.m] ) :



CONSTRUCT_PREFIX_FUNCTION(P[1..m]):
pil[0]:=0; pil[1]:=0;
q:=0;
for i:=2 to m
while q > 0 and P[q+1]<>P[i]

q := pilql;
if P[g+1] = P[i]
q := qt+l

pili]l := q

11






Vyhladavanie v texte: Zhrnutie

Algoritmus Predpocitanie | Vyhladavanie

Naivny algoritmus O(mn) worst-case
Rabin-Karp O(m+n+ =) | expected
Koneény automat O(m?) O(n) worst-case
Knuth-Morris-Pratt O(m) O(n) worst-case
Sufixovy strom O(n) O(m) worst-case

13




