
1



for i := 0 to n-m
valid := true;
for j := 1 to m

if P[j] != T[i+j]
valid := false; break loop

if (valid) then output shift i

2



Rabin-Karp(T[1..n],P[1,,m]):
hashp = hash(P,1)
hasht = hash(T,1)

for i:=0 to m-n
// inv: hasht = hash(T,i+1)
if (hashp = hasht)

// check whether T[i+1..i+m] matches the pattern
valid = true
for j = 1 to m

if P[j] != T[i+j]
valid = false; break loop

if valid then output i
hasht = shift_hash(T,i+1,hasht)

3



– veľkosť abecedy: k
– hašovacia funkcia: (S[i]S[i+ 1]...S[i+m− 1]) mod q

– predpočítaná hodnota: ktmm1 = km−1 mod q

hash(S,i):
// compute hash of S[i]S[i+1]...S[i+m-1]
result = 0
for j = 0 to m-1

result = (k * result + S[i+j]) mod q
return result

shift_hash(S,i,oldhash):
// compute hash of S[i+1]S[i+2]...S[i+m]
// given that oldhash is a hash of S[i]S[i+1]...S[i+m-1]
return ((oldhash + q - (S[i]*ktmm1 mod q))

* k + S[i+m]) mod q

4



0 1 2 3 4 5 6 7 8 9 10 11
T: b a n a n a n o b a n o

i=0: X
i=1: X
i=2: n a n X
i=3: X
i=4: n a n o
i=5: X
i=6: n X
i=7: X
i=8: X
i=9: n X
i=10: X

5



DFA_STRING_MATCHING(T[1..n],tr):
state:=0;
for i:=1 to n

state:=tr[state,T[i]]
if (state = m)

output shift i-m

6



for i := 0 to m
prefix := P[1..i];

for all symbols c from the alphabet
current := prefix + c;
for j := i+1 downto 0

if current[i+1-j+1..i+1] = P[1..j]
tr[i,c] := j;
break the loop

7



KMP_STRING_MATCHING(T[1..n],pi):
// P[m+1] = some character outside alphabet
state := 0
for i := 1 to n

while state>0 and T[i]<>P[state+1]
state := pi[state]

if T[i] = P[state+1]
state := state + 1

if state = m
output shift i-m

8



for all values of q such that
P[1...q] is suffixo-prefix of P[1...i-1]:
(the values are listed from largest to the smallest)
if P[q+1]=P[i] then

pi[i]:=q+1;
break loop;

vypíš všetky sufixo-prefixy reťazca P [1..i]:

q:=i;
while q>0

q:=pi[q]
print P[1..q]

9



CONSTRUCT_PREFIX_FUNCTION(P[1..m]):
pi[0]:=0;
for i:=1 to m

q:=i-1; pi[i]:=0
while q > 0

q:=pi[q]
if P[q+1]=P[i] then

pi[i]:=q+1;
break loop;

10



CONSTRUCT_PREFIX_FUNCTION(P[1..m]):
pi[0]:=0; pi[1]:=0;
q:=0;
for i:=2 to m

while q > 0 and P[q+1]<>P[i]
q := pi[q];

if P[q+1] = P[i]
q := q+1

pi[i] := q

11



an

an

os
5

anos

os

1

3

0

n

banananos an

os

anos
2

4

os
6

os

7

8

s

12



Vyhľadávanie v texte: Zhrnutie

Algoritmus Predpočítanie Vyhľadávanie

Naivný algoritmus O(mn) worst-case

Rabin-Karp O(m+ n+ mn
q ) expected

Konečný automat O(m3) O(n) worst-case

Knuth-Morris-Pratt O(m) O(n) worst-case

Sufixový strom O(n) O(m) worst-case

13


