
1



Opakovanie: Greedy algoritmy

• v každom kroku vezmeme lokálne optimálny krok

• ľahké na implementáciu

• obvykle veľmi efektívne (časová zložitosť)

• metóda sa často nedá použiť

• hlavný problém: dokázať správnosť

Príklady použitia:

• Výber aktivít Θ(n log n)

• Huffmanovo kódovanie Θ(n log n)

• Rozmieňanie peňazí (niektoré systémy) Θ(m)

2



Opakovanie: Dynamické programovanie

• rozkladáme problém na podproblémy

• počítame optimálne riešenia pomocou rekurencií vo veľkej matici
podproblémov

• ľahké na implementáciu

• hlavný problém: vymyslieť správny podproblém

Príklady použitia:

• Rozmieňanie peňazí (všeobecné) Θ(mS)

• Celočíselný problém batohu Θ(nW )

• Najdlhšia spoločná podpostupnosť Θ(mn)

• Najkratšia triangulácia Θ(n3)

3



Opakovanie: Rozdeľuj a panuj

• rozdeľ problém na menšie podproblémy, vyrieš rekurzívne a
skombinuj čiastkové riešenia

• niekedy ťažké na implementáciu, veľký overhead na rekurziu

• hlavný problém: analýza časovej zložitosti

Príklady použitia:

• Triedenie (merge sort, quick sort) Θ(n log n)

• Násobenie veľkých čísel Θ(n1.58...)

• Najbližší pár bodov Θ(n log n)

• Výber k-teho prvku Θ(n)

4



73

208

58

85

82

151

84 82

37
Poprad

Presov

Kosice

Bratislava

Trnava

Trencin

Zilina

Zvolen

Ruzomberok

5



Ruzomberok

Bratislava

Zilina

Kosice

58

Zvolen

208

151

Presov

82

37

Poprad

63

73

84

Trencin 82

85

Trnava

6



7



Porovnanie reprezentácií grafov

Matica susedností Zoznamy susedov

(u, v) ∈ E? Θ(1) Θ(outdeg(u))

Hrany vychádzajúce z u Θ(n) Θ(outdeg(u))

Pamäť Θ(n2) Θ(m+ n)

8



function dfs-visit(v,cnum)
// pre-condition: v is WHITE vertex
// find all vertices that are reachable from v
// by path going through white vertices only
status[v]:=gray;
num[v]:=cnum;
for each w in out(v)

if status[w]=white
dfs-visit(w,cnum)

status[v]:=black;

// --- main program ---
status of all vertices is white
cnum=0; // component number
for all vertices v in V

if status[v]=white
dfs-visit(v,cnum);
cnum:=cnum+1;

9



function dfs-visit(v,cnum)
status[v]:=gray;

* time:=time+1; d[u]:=time;
num[v]:=cnum;
for each w in out(v)

if status[w]=white
* edge (v,w) is a tree edge;

dfs-visit(w,cnum)
status[v]:=black;

* time:=time+1; f[u]:=time;

10



function bfs-visit(v,cnum)
create empty queue Q;
status[v]:=gray;
dist[v]:=0;
enqueue(Q,v);

while Q is not empty
u:=dequeue(Q);
num[u]:=cnum;
for each w in out(u)

if status[w]=white then
status[w]:=gray;
dist[w]:=dist[u]+1;
enqueue(Q,w);

status[u]:=black;

11


