


Opakovanie: Greedy algoritmy
e v kazdom kroku vezmeme lokalne optimalny krok
e [ahké na implementaciu
e obvykle velmi efektivne (Casova zlozitost)
e metdda sa Casto neda pouzit
e hlavny problém: dokazat spravnost
Priklady pouzitia:
e Vyber aktivit O(nlogn)
e Huffmanovo kédovanie ©(nlogn)

e Rozmienanie penazi (niektoré systémy) ©(m)



Opakovanie: Dynamické programovanie
e rozkladdme problém na podproblémy

e pocitame optimalne rieSenia pomocou rekurencii vo vel'kej matici
podproblémov

e [ahké na implementaciu

e hlavny problém: vymysliet spravny podproblém
Priklady pouzitia:

e Rozmienanie penazi (vSseobecné) ©(m.S)

e CelocCiselny problém batohu ©(nW)

e Najdlhsia spolocna podpostupnost ©(mn)

e Najkratsia triangulacia ©(n?)



Opakovanie: Rozdeluj a panuj

e rozdel problém na mensie podproblémy, vyries rekurzivne a
skombinuj Ciastkové riesenia

e nickedy tazké na implementaciu, vel'ky overhead na rekurziu
e hlavny problém: analyza casovej zlozitosti
Priklady pouzitia:
e Triedenie (merge sort, quick sort) ©(nlogn)
e Nasobenie velkych ¢isel ©O(n'>%)
e Najblizsi par bodov ©(nlogn)
e \yber k-teho prvku O(n)



Zilina
82

zomberok Presov

Trencip
37

208 Kosice
Zvolen

151

Bratislava




Kosice

Bratislava

58

Presov
Trnava

151 $

Poprad

. - 63
Trencin Zilina Ruzomberok






Porovnanie reprezentacii grafov

Matica susednosti Zoznamy susedov
(u,v) € E? O(1) O (outdeg(u))
Hrany vychadzajice z u O(n) O (outdeg(u))
Pamat O(n?) O(m +n)




function dfs-visit (v, cnum)

// pre-condition: v is WHITE vertex
// find all vertices that are reachable from v
// by path going through white vertices only
status[v] :=gray;
num[v] :=cnum;
for each w in out(v)

if status[w]=white

dfs-visit (w,cnum)

status[v] :=black;

// --- main program ---
status of all vertices is white
cnum=0; // component number
for all vertices v in V
if status[v]=white
dfs-visit (v, cnum) ;

cnum:=cnum+1;



function dfs-visit (v, cnum)
status[v] :=gray;

* time:=time+1; d[u] :=time;
num|[v] :=cnum;
for each w in out(v)

if status([w]l=white
* edge (v,w) is a tree edge;
dfs-visit (w,cnum)

status[v] :=black;

* time:=time+1; f[ul:=time;

10



function bfs-visit (v, cnum)
create empty queue Q;
status[v] :=gray;
dist[v]:=0;

enqueue (Q,v) ;

while () 1s not empty
u:=dequeue(Q) ;
num[u] :=cnum;
for each w in out(u)
if status[w]=white then
status[w] :=gray;
dist [w] :=dist[u]+1;
enqueue (Q,w) ;
status [u] :=black;

11



