
Skryté Markovove modely

Hidden Markov models (HMMs)
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Ret’azec: {a, c, g, t}∗

X = x1, x2, . . . , xn

Postupnost’ stavov: {�,�}∗

S = s1, s2, . . . , sn

tatttagcgtcttctatcatccaatcactgcactttacacactataaatagagcagctca

tgggcgtatttgcgctagtgttgggtgttccgctgtgctgtttttccgtcatggctcgca

ctaagcaaactgctcggaagtctactggtggcaaggcgccacgcaaacagttggccacta

HMM definuje P(X, S) pre ret’azce X a postupnosti stavov S:

P(X, S) = P(s1)P(x1|s1)P(s1 → s2)P(x2|s2) · · ·

P(sn−1 → sn)P(xn|sn)
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Použitie HMM

• Modelovanie sekvenčných dát:

časové rady pozorovaní, text, zvukové signály, biologické sekvencie

• Zvyčajne ret’azec X známy,

postupnost’ stavov S skrytý faktor (chceme zistit’)

• Model zostavíme tak, aby realistické dvojice (X, S) mali vysokú

pravdepodobnost’
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Príklad použitia HMM: hl’adanie génov v DNA

Vstup: DNA sekvencia X = x1, . . . , xn

tatttagcgtcttctatcatccaatcactgcactttaocacactataaatagagcagctca

tgggcgtatttgcgctagtgttgggtgttccgctgtgctgtttttccgtcatggctcgca

ctaagcaaactgctcggaagtctactggtggcaaggcgccacgcaaacagttggccacta

Výstup: poloha génov (úsekov kódujúcich proteíny)

Alebo: označkuj každý znak ako kódujúci/nekódujúci

Postupnost’ značiek S = s1, s2, . . . , sn

tatttagcgtcttctatcatccaatcactgcactttacacactataaatagagcagctca

tgggcgtatttgcgctagtgttgggtgttccgctgtgctgtttttccgtcatggctcgca

ctaagcaaactgctcggaagtctactggtggcaaggcgccacgcaaacagttggccacta
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Výpo čtový problém

Vstup: ret’azec X = x1, . . . , xn a HMM
a: 0.2
c: 0.3
g: 0.3
t : 0.2
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t : 0.3
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tatttagcgtcttctatcatccaatcactgcactttacacactataaatagagcagctca

tgggcgtatttgcgctagtgttgggtgttccgctgtgctgtttttccgtcatggctcgca

ctaagcaaactgctcggaagtctactggtggcaaggcgccacgcaaacagttggccacta

Nájdi najpravdepodobnejšiu postupnost’ stavov S = s1, . . . , sn

s maximálnou P(X, S): Viterbiho algoritmus

tatttagcgtcttctatcatccaatcactgcactttacacactataaatagagcagctca

tgggcgtatttgcgctagtgttgggtgttccgctgtgctgtttttccgtcatggctcgca

ctaagcaaactgctcggaagtctactggtggcaaggcgccacgcaaacagttggccacta
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Viterbiho algoritmus

Dynamické programovanie:

• A[i, v] — pravdepodobnost’ najlepšej postupnosti stavov, ktorá

vygeneruje x1, . . . , xi a skončí v stave v

• A[i, v] = maxu A[i − 1, u] · P(u → v) · P(xi|v)

• Pre každé A[i, v] si pamätáme najlepší predchádzajúci stav u
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Viterbiho algoritmus

Dynamické programovanie:

• A[i, v] — pravdepodobnost’ najlepšej postupnosti stavov, ktorá

vygeneruje x1, . . . , xi a skončí v stave v

• A[i, v] = maxu A[i − 1, u] · P(u → v) · P(xi|v)

• Pre každé A[i, v] si pamätáme najlepší predchádzajúci stav u
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Zložitost’ Viterbiho algoritmu

Čas O(nm2), pamät O(nm)

n = dĺžka sekvencie, m = počet stavov modelu

Príklad: hl’adanie génov na 250 MB sekvencii

so 100-stavovým HMM ⇒ 25 GB pamäte
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Zložitost’ Viterbiho algoritmu

Čas O(nm2), pamät O(nm)

n = dĺžka sekvencie, m = počet stavov modelu

Príklad: hl’adanie génov na 250 MB sekvencii

so 100-stavovým HMM ⇒ 25 GB pamäte

Prístupy s menej pamäte

• Nasekáme X na kratšie kusy

Problémy na hraniciach, suboptimálne riešenie celku

• Check pointing [Grice et al. 1997]

Pamät’ O(n + m L
√

n), L-násobné spomalenie

• Náš prístup: on-line algoritmus

Vel’kost’ pamäte sa dynamicky mení, väčšinou malá
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On-line Viterbiho algoritmus

a t g c c g c t g c t a
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• Efektívna detekcia sútoku

• Vypíš cestu nal’avo od sútoku

• Zmaž dáta nal’avo od sútoku

Súčasne s nami podobný algoritmus aj [Keibler, Arumugam, Brent 2007]

9



Efektívna detekcia sútoku

Udržuj komprimovaný

strom spätných liniek
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. . . vymaž nepoužité vetvy,

skontrahuj cesty

Spomalenie: ≈ 5%
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Zlé správy

1 2

1 2 3

Uvažujme vstupy 1{1, 2}n−2{1, 2, 3}

Každý algoritmus potrebuje v najhoršom prípade Ω(n) pamät’.
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Na skuto čných dátach ale môžeme pamät’ ušetrit’

• 256-stavový HMM na hl’adanie génov

• 20 MB sekvencie (l’udská DNA)
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• Priemerná pamät’: ≈ 11 000

• Maximálna pamät’: ≈ 222 000

• Priemerná maximálna pamät’:

≈ 100 000
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Analýza priemerného prípadu

Odhadujeme strednú hodnotu maximálnej pamäte pre náhodný ret’azec

• Rozdelenie ret’azcov rovnomerné (i.i.d. znaky) alebo z HMM

• Náhodný ret’azec X = x1, . . . , xn

• Nech m(X) je (maximálna) pamät’ náš algoritmus potrebuje pre X

• Odhadujeme E(m(X)) ako funkciu n
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Ďalšie zlé správy

1 2

1 2 3

Pre rovnomerné rozdelenie priemerná pamät’ O(1)

Pre ret’azce z tohto HMM pamät’ Θ(n)
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Ďalšie zlé správy

A B C

Periodický model: pre l’ubovol’ný ret’azec Θ(n) pamät’

Tri postupnosti stavov s rôznym začiatkom:

ABCABC. . . , BCABCA. . . , CABCAB. . .
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Ďalšie zlé správy

A

1: e

B

0: 1−e 0: 1−e
1: e

0.9

0.1

0.1

0.9

Ekvivalentné stavy: pre l’ubovol’ný ret’azec Θ(n) pamät’

Dve postupnosti stavov s rovnakou pravdepodobnost’ou:

AAA. . . , BBB. . .
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Dobré správy

Pre vel’a HMM priemerná maximálna pamät’ O(log n) pre i.i.d. ret’azce.

• Rozdel’me X na bloky : nový blok ak sútokom klesne pamät’ pod c

• Pamät’ v bloku dĺžky ℓ najviac c + ℓ = O(ℓ)
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Dobré správy

Pre vel’a HMM priemerná maximálna pamät’ O(log n) pre i.i.d. ret’azce.

• Rozdel’me X na bloky : nový blok ak sútokom klesne pamät’ pod c

• Pamät’ v bloku dĺžky ℓ najviac c + ℓ = O(ℓ)

• Ciel’: ohraničíme pravdepodobnost’ výskytu bloku dĺžky ℓ

exponenciálne klesajúcou funkciou a · bℓ

• Celková pamät’: dĺžka najdlhšieho bloku

t.j. stredná hodnota maxima z najviac n dĺžok

O(log n)

• Podobný problém: najdlhší úsek jedničiek v i.i.d. ret’azci

[Guibas, Odlyzko 1980; Gordon, Schilling, Waterman 1986]
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Analýza pre 2-stavové symetrické HMM

A

0: 1−e
1: e

0: e
1: 1−e

B e,t<0.5
t

t

1−t 1−t

Možné konfigurácie smerníkov:
xi−1 xi

A

B

xi−1 xi

A

B

xi−1 xi

A

B

xi−1 xi

A

B

Ktorá konfigurácia?

Záleží na pomere A[i − 1, A] a A[i − 1, B]:

Ai−1 =
log A[i − 1, A] − log A[i − 1, B]

log(1 − e) − log e
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Konfigurácie smerníkov

Ai−1 =
log A[i−1,A]−log A[i−1,B]

log(1−e)−log e
L =

⌈

log(1−t)−log t

log(1−e)−log e

⌉

−L < Ai−1 < L

xi−1 xi

A

B

Ai := Ai−1 ± 1,

+1 ak xi = 0,

−1 ak xi = 1

Ai−1 ≥ L

xi−1 xi

A

B

sútok

Ai := L ± 1

podl’a xi

Ai−1 ≤ −L

xi−1 xi

A

B

sútok

Ai := −L ± 1

podl’a xi

• Premenná Ai je náhodná prechádzka na intervale (−L, L)

• Odhadujeme čas, kým narazí na kraj intervalu
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Aké dlhé sú bloky?

A

0: 1−e
1: e

0: e
1: 1−e

B e,t<0.5
t

t

1−t 1−t

• Dobre študovaný problém náhodných prechádzok [Feller 1968]

• Stredná hodnota d ĺžky:
⌈

2
log(1−t)−log t

log(1−e)−log e

⌉

− 1

• Rozdelenie d ĺžky ohrani čené exponenciálnou funkciou:

Rℓ: pravdepodobnost’ dĺžky 2ℓ + 1 alebo 2ℓ + 2

b · α2ℓ ≤ P(Rℓ) ≤ c · α2ℓ , pre nejaké b, c > 0, α < 1

• Dostávame priemernú pamät’ približne (2L2/π2) ln n
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Zovšeobecnenia

Nesymetrické dvojstavové HMM

O(log n) odhad platí pre takmer všetky 2-stavové HMM

aj pre ret’azce generované HMM

(okrem rôznych symetrií a nulových pravdepodobností)

Viacstavové HMM

Postačujúca podmienka na O(log n): synchronizujúci ret’azec σ

• Výskyt σ vždy spôsobí koniec bloku

• Rozdelenie dĺžky medzi výskytmi σ exponenciálne ohraničené
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Špeciálny prípad synchronizujúceho ret’azca

Pre ret’azec α zostrojme graf G(α):

vrcholy = stavy modelu

cena hrany (u, v) = log prob. najlepšej postupnosti stavov generujúcej α

Lema: Ak G(α) je silne súvislý a existuje v ňom slučka s cenou ostro

väčšou ako priemerná cena každého iného cyklu, αk je synchronizujúci

ret’azec pre dost’ vel’ké k.

• Sledy dĺžky k v G(α): postupnosti stavov pre αk

• Pre dost’ vel’ké k najdrahšia cesta krúži okolo najdrahšej slučky

• Dôjde k sútoku najlepších ciest pre rôzne koncové vrcholy
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Špeciálny prípad synchronizujúceho ret’azca

Lema: Ak G(α) je silne súvislý a existuje v ňom slučka s cenou ostro

väčšou ako priemerná cena každého iného cyklu, αk je synchronizujúci

ret’azec pre dost’ vel’ké k.

Dá sa pre dané α a model algoritmicky testovat’.

23



Pamät’ pre hl’ada č génov, i.i.d. ret’azce
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• Je pamät’ O(log n)?

• Vieme nájst’ synchronizujúci ret’azec?

• Alebo je pamät’ ω(log n)?
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Zhrnutie

• Viterbiho algoritmus je pre dlhé ret’azce pamät’ovo náročný

• On-line Viterbiho algoritmus používa pamät’ premenlivej vel’kosti

• Pri jednoduchom hl’adači génov 200-násobná úspora

• Mnohé HMM potrebujú v priemernom prípade pamät’ Θ(log n)

• Najhorší prípad Θ(n)

Otvorené problémy

• Je naša podmienka iba postačujúca? Dá sa zvšeobecnit’?

• Je nejaký odhad na dĺžku α, ktoré potrebujeme uvažovat’?

• Majú nejaké modely pamät’ inú ako Θ(1), Θ(log n), Θ(n)?
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