
Chapter 1

Sampling Methods

There are many probabilistic models of practical interest for which exact inference is intractable.
One important class of inference algorithms is based on deterministic approximation schemes and
includes methods such as variational methods. Here we consider an alternative very general and
widely used framework for approximate inference based on numerical sampling, also known as
the Monte Carlo technique.

Although for some applications of graphical models the posterior distribution over unobserved
variables will be of direct interest in itself, for most situations the posterior distribution is required
primarily for the purpose of evaluating expectations, for example in order to make predictions.

The fundamental problem which we therefore wish to address in this chapter involves finding
the expectation of some function f(x) with respect to a probability distribution p(x). Here, the
components of x might comprise discrete or continuous variables, or some combination of the
two. Thus in the case of continuous variables we wish to evaluate the expectation

hfi =

Z

f(x)p(x) dx: (1.1)

This is illustrated schematically for a 1-dimensional distribution in Figure ??. We shall suppose

x

f x( )

p x( )

Figure 1.1: Schematic illustration of a function f(x) whose expectation is to be evaluated with
respect to a distribution p(x).

that such expectations are too complex to be evaluated exactly using analytical techniques. In some
cases an expectation can be evaluated by first finding an analytic approximation to the posterior
distribution. One approach to finding an approximate posterior distribution is to use variational
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2 CHAPTER 1. SAMPLING METHODS

methods, as discussed at length in Chapter ??. The Laplace approximation framework, described
in Chapter ??, has also been applied to this problem.

The general idea behind sampling methods is to obtain a set of samples x

(l) (where m =

1; : : : ;M ) drawn from the distribution p(x). This allows the expectation (??) to be approximated by
a finite sum

b

f =

1

M

M

X

m=1

f(x

(m)

): (1.2)

The accuracy of such an approximation will depend on a variety of factors, some of which will be
discussed in greater detail later in this chapter. Here we note that as long as the samples x(m) are

drawn from the distribution p(x) then h bfi = hfi and so the estimator has the correct mean. The
variance of the estimator is easily seen to be �2=M , where

�

2

= h(f � hfi)

2

i (1.3)

is the variance of the function f(x) under the distribution p(x). It is worth emphasizing that the ac-
curacy of the estimator therefore does not depend on the dimensionality of x, and that, potentially,
high accuracy may be achievable with a relatively small number of samples x(m). Furthermore, the
variance of the estimator will decrease with increasing number M of samples.

One potential difficulty, however, is that the samples fx(m)

g might not be independent, and
so the effective sample size might be much smaller than the apparent sample size. Also, referring
back to Figure ??, we note that if f(x) is small in regions where p(x) is large, and vice versa, then
the expectation may be dominated by regions of small probability, implying that relatively large
sample sizes will be required to achieve sufficient accuracy.

While sampling methods have wide applicability, we shall of course be primarily interested in
the case in which the distribution p(x) is specified in terms of a graphical model. In the case of a
directed graph with no observed variables it is straightforward to sample from the joint distribution
(assuming that it is possible to sample from the conditional distributions at each node) using the
following ancestral sampling approach. The joint distribution is specified by

p(x) =

d

Y

i=1

p(x

i

jx

�(i)

) (1.4)

where x
�(i)

denotes the set of variables associated with the parents of x
i

. To obtain a sample from
the joint distribution we make one pass through the set of variables in the order x

1

; : : : ; x

d

sampling
from the conditional distributions p(x

i

jx

�(i)

). This is always possible since at each step all of the
parent values will have been instantiated. After one pass through the graph we will have obtained
a sample from the joint distribution.

Now consider the case of a directed graph in which some of the nodes are instantiated with
observed values. We can in principle extend the above procedure, at least in the case of nodes
representing discrete variables, to give the following logic sampling approach, which can be seen
as a special case of ‘importance sampling’ discussed in Section ??. At each step, when a sampled
value is obtained for a variable x

i

whose value is observed, the sampled value is compared to
the observed value and if they agree then again the sample value is retained and the algorithm
proceeds to next variable in turn. However, if the sampled value and the observed value disagree,
then the whole sample so far is discarded and the algorithm starts again with the first node in
the graph. This algorithm samples correctly from the posterior distribution since it corresponds
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simply to drawing samples from the joint distribution of hidden variables and data variables and
then discarding those samples which disagree with the observed data (with the slight saving of
not continuing with the sampling from the joint distribution as soon as one contradictory value
is observed). However, the overall probability of accepting a sample from the posterior decreases
rapidly as the number of observed variables, and the number of states which those variables can
take, increases.

In the case of probability distributions defined by an undirected graph there is no one-pass
sampling strategy which will sample even from the prior distribution with no observed variables.
Instead, computationally more expensive techniques must be employed, such as Gibbs sampling
which is discussed in Section ??.

As well as sampling from conditional distributions we may also require samples from a marginal
distribution. If we already have a strategy for sampling from a joint distribution p(x; y) then it is
straightforward to obtain samples from the marginal distribution p(x) simply by ignoring the val-
ues for y in each sample.

1.0.1 Sampling and the EM Algorithm

In addition to providing a mechanism for direct implementation of the Bayesian framework, Monte
Carlo methods can also play a role in the frequentist paradigm, for example to find maximum
likelihood solutions. In particular, sampling methods can be used to approximate the E-step of the
EM algorithm for models in which the E-step cannot be performed analytically. Consider a model
with hidden variables x

H

, visible (observed) variables x
V

and parameters �. The function which is
optimized with respect to � in the M-step is the expected complete-data log likelihood, given by

Q(�; �

old

) =

Z

p(x

H

jx

V

; �

old

) ln p(x

H

; x

V

j�) dx

H

: (1.5)

We can use sampling methods to approximate this integral by a finite sum over samples fx
(l)

H

g

drawn from the current estimate for the posterior distribution p(x

H

jx

V

; �

old

), so that

Q(�; �

old

) '

1

M

M

X

m=1

ln p(x

(m)

H

; x

V

j�): (1.6)

TheQ function is then optimized in the usual way in the M-step. This procedure is called the Monte
Carlo EM algorithm.

It is straightforward to extend this to the problem of finding the mode of the posterior distribu-
tion over � (the MAP estimate) when a prior distribution p(�) has been defined, simply by adding
ln p(�) to the function Q(�; �

old

) before performing the M-step.
A particular instance of the Monte Carlo EM algorithm, called stochastic EM, arises if we con-

sider a finite mixture model, and draw just one sample at each E-step. Suppose the L-dimensional
binary latent variable x

z

characterizes which of the L components of the mixture is responsible for
generating each data point. In particular there is one vector-valued element of x

z

for each data
point in the data set, and each such vector has all of its L elements equal to zero except for the par-
ticular element representing the corresponding component of the mixture. In the E-step a sample
of x

z

is taken from the posterior distribution p(x

z

jx

V

; �

old

) where x
V

is the data set. This effectively
makes a hard assignment of each data point to one of the components in the mixture. In the M-step,
this sampled approximation to the posterior distribution is used to update the model parameters
in the usual way.

Now suppose we move from a maximum likelihood approach to a full Bayesian treatment in
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which we wish to sample from the posterior distribution over �. In principle we would like to draw
samples from the joint posterior p(�; x

H

jx

V

), but we shall suppose that this is computationally
difficult. Suppose further that it is relatively straightforward to sample from the complete-data
parameter posterior p(�jx

H

; x

V

). This inspires the data augmentation algorithm, which alternates
between two steps known as the I-step (imputation step, analogous to an E-step) and the P-step
(posterior step, analogous to an M-step).

I-step. We wish to sample from p(x

H

jx

V

) but we cannot do this directly. We therefore note the
relation

p(x

H

jx

V

) =

Z

p(x

H

j�; x

V

)p(�jx

V

) d� (1.7)

and hence form = 1; : : : ;M we first draw a sample �(m) from the current estimate for p(�jx
V

),

and then use this to draw a sample x
(m)

H

from p(x

H

j�

(m)

; x

V

).

P-step. Given the relation

p(�jx

V

) =

Z

p(�jx

H

; x

V

)p(x

H

jx

V

) dx

H

(1.8)

we use the samples fx
(m)

H

g obtained from the I-step to compute a revised estimate of the
posterior distribution over � given by

p(�jx

V

) '

1

M

M

X

m=1

p(�jx

(m)

H

; x

V

): (1.9)

By assumption, it will be feasible to sample from this approximation in the I-step.

Note that we are making a (somewhat artificial) distinction between parameters � and hidden
variables x

H

. From now on we blur this distinction and focus simply on the problem of drawing
samples from a given joint posterior distribution.

1.1 Basic Sampling Algorithms

In this section we consider the problem of sampling from some standard distributions defined over
a single, continuous variable x 2 <. Since the samples will be generated by a computer algorithm
they will in fact be pseudo-random numbers, that is, they will be deterministically calculated, but
must nevertheless pass appropriate tests for randomness. We begin by looking at the problem of
generating pseudo-random numbers with a uniform distribution over (0; 1), as this forms the basis
for generating numbers having other, non-uniform, distributions.

1.1.1 Standard Distributions

Pseudo-random number generators are typically based on successive applications of a transfor-
mation function D(�), so that a sequence (x

(1)

; : : : ; x

(N)

) is obtained using x

(n)

= D(x

(n�1)

). The
particular sequence of numbers obtained is determined by the initial value x(1), known as the seed.

It might appear that the use of one of the standard chaotic functions for D(�) might be appro-
priate. A chaotic function would have the property that the resulting sequence is highly sensitive
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to the initial value x(1), so that changes in subsequent values due to a small change in x

(1) would
grow exponentially as the sequence progresses. However, it turns out that a chaotic D(�) need not
give rise to a practically acceptable random number generator, even when the limiting distribu-
tion is correct. For example, the finite precision used to represent continuous variables in a digital
computer can result in some functions leading to sequences which converge to a fixed value.

Instead we seek choices for D(�) which take account of the finite representations of digital com-
puters. It is often convenient to consider integer representations for random numbers, so that the
output of the random number generator is an integer x from the set f0; : : : ; Ng, where N is the
largest integer which can be stored by the computer. Corresponding continuous numbers from
[0; 1) can subsequently be obtained using x=(N + 1) which is interpreted as a floating point opera-
tion. First we define the period of a random number generator to be the smallest integer T such that
x

(n+T )

= x

(n) for all n, in other words such that D(�)

T is the identity operator. Clearly the largest
value which the period of a simple generator of the form x

(n)

= D(x

(n�1)

) can take is M + 1,
but carelessness over the design of the random number generator can easily lead to significantly
smaller values. Longer periods can be obtained using extensions of the transformation approach,
such as using functions of x(n) and x

(n�1).

Many common random number generators are based on the linear congruential method which
defines

D(x) = (ax+ b) mod (M + 1): (1.10)

Considerable care must be exercised in the choice of the constants a and b in order to ensure a
generator with acceptable properties. One obviously desirable property is that the sequence have
its maximum period of M + 1.

We next consider how to generate random numbers from non-uniform distributions, assuming
that we already have available a source of uniformly distributed random numbers. Suppose that
x is uniformly distributed over the interval (0; 1), and suppose that we transform the values of x
using some function f(�) so that y = f(x). The distribution of y will be governed by

p(y) = p(x)

�

�

�

�

dx

dy

�

�

�

�

(1.11)

where, in this case, p(x) = 1. Our goal is to choose the function f(x) such that the resulting
values of y have some specific desired distribution p(y). Integrating (??) we obtain x = h(y) �

R

y

�1

p(y

0

) dy

0 which is the indefinite integral of p(y). Thus, y = h

�1

(x), and so we have to transform
the uniformly distributed random numbers using a function which is the inverse of the indefinite
integral of the desired distribution. This is illustrated in Figure ??.

Consider for example the exponential distribution

p(y) = � exp(��y): (1.12)

In this case h(y) = 1� exp(��y) and so if we transform our uniformly distributed variable x using
y = ��

�1

ln(1� x) then y will have an exponential distribution.

Another example of a distribution to which the transformation method can be applied is given
by the Cauchy distribution

p(y) =

1

�

1

1 + y

2

: (1.13)
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p(y)

h(y)

y
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Figure 1.2: Geometrical interpretation of the transformation method for generating non-uniformly
distributed random numbers. h(y) is the indefinite integral of the desired distribution p(y). If a
uniformly distributed random variable x is transformed using y = h

�1

(x) then y will be distributed
according to p(y).

In this case the inverse of the indefinite integral is the ‘tan’ function.
The generalization to multiple variables is straightforward and involves the Jacobian of the

change of variables, so that

p(y

1

; : : : ; y

d

) = p(x

1

; : : : ; x

d

)

�

�

�

�

�(y

1

; : : : ; y

d

)

�(x

1

; : : : ; Xx

d

)

�

�

�

�

: (1.14)

As a final example of the transformation method we consider the Box-Muller method for gen-
erating samples from a Gaussian distribution. Suppose we generate pairs of uniformly distributed
random numbers x

1

; x

2

2 (�1; 1) (which we can do by transforming a variable distributed uni-
formly over (0; 1) using x! 2x� 1). Next we discard each pair unless it satisfies x2

1

+ x

2

2

� 1. This
leads to a uniform distribution of points inside the unit circle with p(x

1

; x

2

) = 1=�, as illustrated in
Figure ??. Then, for each pair x

1

; x

2

we evaluate the quantities

-1
-1

0

0

1
x1

x2

1

Figure 1.3: The Box-Muller method for generating normally distributed random numbers involves
generating samples from a uniform distribution inside the unit circle.
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y

1

= x

1

�

�2 lnx

1

r

2

�

1=2

(1.15)

y

2

= x

2

�

�2 lnx

2

r

2

�

1=2

(1.16)

where r2 = x

2

1

+ x

2

2

. Then the joint distribution of y
1

and y

2

is given by

p(y

1

; y

2

) = p(x

1

; Xx

2

)

�

�

�

�

�(y

1

; y

2

)

�(x

1

; x

2

)

�

�

�

�

(1.17)

=

�

1

p

2�

exp(�y

2

1

=2)

��

1

p

2�

exp(�y

2

2

=2)

�

(1.18)

and so y

1

and y

2

are independent and each has a normal distribution with zero mean and unit
variance.

Clearly the transformation y ! �y + � can be used to generate normally distributed random
numbers with mean � and variance �2.

To generate vector-valued variables having a multi-variate normal distribution with mean �

and covariance � we can employ the eigenvector/eigenvalue decomposition of the covariance
matrix

�u

i

= �

i

u

i

: (1.19)

It is then easily verified that, if x
i

are univariate and normally distributed, then the variable

y = �+

X

i

�

1=2

i

x

i

u

i

(1.20)

has the required multi-variate distribution. This is illustrated geometrically in Figure ??. In practice
it is computationally more efficient, and also more robust, to use a Cholesky decomposition of the
form � = LL

T. Then, if x is a vector valued random variable whose components are independent
and normally distributed with zero mean and unit variance, then y = �+Lx will have mean � and
covariance �.

Obviously the transformation technique depends for its success on the ability to calculate and
then invert the indefinite integral of the required distribution. Such operations will only be feasible
for a limited number of very simple distributions, and so we must turn to alternative approaches
in search of a more general strategy. Here we consider two techniques called rejection sampling
and importance sampling. Although mainly limited to univariate distributions and thus not directly
applicable to complex problems in many dimensions, they do form important components in more
general strategies.

1.1.2 Rejection Sampling

The rejection sampling framework allows us to sample from relatively complex distributions, sub-
ject to certain constraints. We begin by considering univariate distributions and discuss the exten-
sion to multiple dimensions subsequently.

Suppose we wish to samples from a distribution p(x) which is not one of the simple, standard
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x1

x2

m

u1
u2

l 2

1/2

l 1

1/2

Figure 1.4: Geometrical view of a procedure for generating samples from a multi-variate normal
distribution, given a source of univariate normally-distributed random numbers. The ellipse repre-
sents the one standard deviation contour of a Gaussian distribution with mean � whose covariance
matrix has eigenvectors u

i

with corresponding eigenvalues �
i

. A sample from the multivariate
Gaussian distribution can be obtained using a linear combination of the eigenvectors with coeffi-
cients given by suitably scaled univariate Gaussian distributed random variables.

distributions considered so far, and that sampling directly from p(x) is difficult. Furthermore sup-
pose, as is often the case, that we are easily able to evaluate p(x) for any given value of x, up to
some normalizing constant Z, so that

p(x) =

1

Z

ep(x) (1.21)

where ep(x) can readily be evaluated, but Z is unknown.

In order to apply rejection sampling we need some simpler distribution q(x), sometimes called
a proposal distribution, from which we can readily draw samples. We next introduce a constant k
whose value is chosen such that kq(x) � ep(x) for all values of x. The function kq(x) is called the
comparison function, and is illustrated in Figure ??. Each step of the rejection sampler involves
generating two random numbers. First, we generate a number x

0

from the distribution q(x). Next,
we generate a number u

0

from the uniform distribution over [0; kq(x
0

)℄. This pair of random num-
bers has uniform distribution under the curve of the function kq(x). Finally, if u

0

> ep(x

0

) then the
sample is rejected, otherwise u

0

is retained. Thus the pair is rejected if it lies in the grey shaded
region in Figure ??. The remaining pairs then have uniform distribution under the curve of ep(X),
and hence the corresponding X values are distributed according to p(x), as desired.

We can see more formally that the rejection sampling procedure samples from the correct distri-
bution as follows. The original values of x are generated with distribution q(x) and these samples
are then accepted with probability ep(x)=kq(x) and so the resulting distribution of x is given by
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p(x)~

x0

u0

x

kq x( )kq x( )0

Figure 1.5: In the rejection sampling method, samples are drawn from a simple distribution q(x)

and rejected if they fall in the grey area shown. The resulting samples are distributed according to
p(x), which is the normalized version of ep(x).

normalization as

[ep(x)=kq(x)℄q(x)

Z

[ep(x)=kq(x)℄q(x) dx

=

ep(x)

Z

ep(x) dx

= p(x): (1.22)

The probability that a sample will be accepted is given by

p(a

ept) =

Z

[ep(x)=kx(x)℄q(x) dx

=

1

k

Z

ep(x) dx: (1.23)

Thus the fraction of points which are rejected by this method depends on the ratio of the area
under the unnormalized distribution ep(x) to the area under the curve kq(x). We therefore see that
the constant k should be as small as possible subject to the limitation that kq(x) must be nowhere
less than ep(x).

As an illustration of the use of rejection sampling, consider the task of sampling from the
Gamma distribution

Gam(xja) =

x

a�1

exp(�ax)

�(a)

: (1.24)

where a > 0. This has, for a > 1, a bell-shaped form, as shown in Figure ??. A suitable proposal
distribution is therefore the Cauchy (??) since this too is bell-shaped and since we can use the
transformation method, discussed earlier, to sample from it. We need to generalize the Cauchy
slightly to ensure that it nowhere has a smaller value than the Gamma distribution. This can be
achieved by transforming a uniform random variable z using x = b tan z + 
, which gives random
numbers distributed according to

q(x) =

k

1 + (x� 
)

2

=b

2

: (1.25)
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0 10 20 30
0

0.05

0.1

0.15

x

p(x)

Figure 1.6: Plot showing the Gamma distribution given by (??) as the solid curve, with a scaled
Cauchy proposal distribution given by the dashed curve. Samples from the Gamma distribution
can be obtained by sampling from the Cauchy and then applying the rejection sampling criterion.

The minimum reject rate is obtained by setting 
 = a � 1, b2 = 2a � 1 and choosing the constant
k to be as small as possible while still satisfying the requirement kq(x) � ep(x). The resulting
comparison function is shown, together with the Gamma distribution, in Figure ??.

1.1.3 Adaptive Rejection Sampling

In many instances where we might wish to apply rejection sampling it proves difficult to determine
a suitable analytic form for the envelope distribution q(x). An alternative approach is to construct
the envelope function on the fly based on measured values of the distribution p(x). We consider
only the univariate case since it is only here that the algorithm is of significant practical value.
Construction of an envelope function is particularly straightforward for cases in which p(x) is log
concave, in other words when ln p(x) has derivatives which are non-increasing functions of x. The
construction of a suitable envelope function is illustrated graphically in Figure ??.

x1
x

ln ( )p x

x2 x3

Figure 1.7: In the case of distributions which are log concave, an envelope function for use in
rejection sampling can be constructed using the tangent lines computed at a set of grid points.
If a sample point is rejected it is added to the set of grid points and used to refine the envelope
distribution.
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The function ln p(x) and its gradient are evaluated at some initial set of grid points, and the
intersections of resulting tangent lines are used to construct the envelope function. Next a sample
value is drawn from the envelope distribution. This is straightforward (Exercise ??) since the log
of the envelope distribution is a succession of linear functions, and hence the envelope distribution
itself comprises a piecewise exponential distribution of the form

q(x) = k

i

�

i

exp f��

i

(x� x

i�1

)g x 2 (x

i�1

; x

i

℄: (1.26)

Once a sample has been drawn the usual rejection criterion can be applied. If the sample is accepted
then it will be a draw from the desired distribution. If, however, the sample is rejected, then it is
incorporated into the set of grid points, a new tangent line is computed and the envelope function
is thereby refined. As the number of grid points increases, so the envelope function becomes a
better approximation of the desired distribution p(x) and the probability of rejection decreases.

A variant of the algorithm exists which avoids the evaluation of derivatives. The adaptive
rejection sampling framework can also be extended to distributions which are not log concave,
simply by following each rejection sampling step with a Metropolis-Hastings step, giving rise to
adaptive rejection Metropolis sampling.

Clearly for rejection sampling to be of practical value we require that the comparison function
be close to the required distribution so that the rate of rejection is kept to a minimum. Now let
us examine what happens when we try to use rejection sampling in spaces of high dimension-
ality. Consider, for the sake of illustration, a somewhat artificial problem in which we wish to
sample from a zero-mean multi-variate normal distribution with covariance �

2

P

I , where I is the
unit matrix, by rejection sampling from a proposal distribution which is itself a zero-mean normal
distribution having covariance �2

Q

I . Obviously we must have �2
Q

> �

2

P

in order that there exists

a k such that kq(x) � p(x). In d-dimensions the optimum value of k is given by k = (�

q

=�

p

)

d,
as illustrated for d = 1 in Figure ??. The acceptance rate will be the ratio of volumes under the

−5 0 5
0

0.25

0.5

x

Figure 1.8: Illustrative example of rejection sampling involving sampling from a normal distribu-
tion p(x) shown by the solid curve, by using rejection sampling from a proposal distribution q(x),
shown by the dashed curve, which is also normal.

p(x) and kq(x) which, since both distributions are normalized, is just 1=k. Thus the acceptance
rate diminishes exponentially with dimensionality. Even if �

q

exceeds �
p

by just one percent, for
d = 1000 the acceptance ratio will be approximately 1=20; 000. In this illustrative example the
comparison function is close to the required distribution. For more practical examples, where the
desired distribution may be multi-modal and sharply peaked, it will be extremely difficult to find
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a good proposal distribution and comparison function. Furthermore, the exponential decrease of
acceptance rate with dimensionality is a generic feature of rejection sampling. Although rejection
can be a useful technique in one or two dimensions it is unsuited to problems of high dimension-
ality. It can, however, play a role as a sub-routine in more sophisticated algorithms for sampling in
high dimensional spaces.

1.1.4 Importance Sampling

One of the principal reasons for wishing to sample from complicated probability distributions is to
be able to evaluate expectations of the form (??). Importance sampling provides a framework for
approximating expectations, but does not itself provide a mechanism for drawing samples from
distribution p(x).

The finite sum approximation to the expectation, given by (??), depends on being able to draw
samples from the distribution p(x). Suppose, however, that it is impractical to sample directly from
p(x) by that we can evaluate p(x) easily for any given value of x. As we discussed at the start of this
chapter, one strategy for evaluating expectations would be to discretize the x-space into a uniform
grid and to evaluate the integrand as a sum of the form

hfi '

M

X

m=1

p(x

(m)

)f(x

(m)

): (1.27)

An obvious problem with this approach is that the number of terms in the summation grows
exponentially with the dimensionality of x. Furthermore, as we have already noted, the kinds
of probability distributions of interest will often have much of their mass confined to relatively
small regions of x space and so uniform sampling will be very inefficient since in high dimensional
problems only a very small proportion of the samples will make a significant contribution to the
sum. We would really like to choose the sample points to fall in regions where p(x) is large (or
more precisely where the product p(x)f(x) is large).

As in the case of rejection sampling, importance sampling is based on the use of a distribution
q(x) from which it is easy to draw samples. This is illustrated in Figure ?? We can then express the

x

f x( )

p x( )
q x( )

Figure 1.9: Importance sampling addresses the problem of evaluating the expectation of a function
f(x) with respect to a distribution p(x) from which it is difficult to draw samples directly. Instead,
samples fx(m)

g are drawn from a simpler distribution q(x) and the corresponding terms in the
summation are weighted by the ratios p(x(m)

)=q(x

(m)

).
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expectation in the form of a finite sum over samples fx(m)

g drawn from q(x)

hfi =

Z

f(x)p(x) dx

=

Z

f(x)

p(x)

q(x)

q(x) dx

'

1

M

M

X

m=1

p(x

(m)

)

q(x

(m)

)

f(x

(m)

): (1.28)

The quantities r
m

= p(x

(m)

)=q(x

(m)

) are known as importance weights, and they correct the bias
introduced by sampling from the wrong distribution. Note that, unlike rejection sampling, all of
the samples generated are retained.

It will often be the case that the distribution p(x) can only be evaluated up to a normalization
constant, so that p(x) = ep(x)=Z

p

where ep(x) can be evaluated easily, whereas Z

p

is unknown.
Similarly, we may wish to use an importance sampling distribution q(x) = eq(x)=Z

q

which has the
same property. We then have

hfi =

Z

f(x)p(x) dx

=

Z

q

Z

p

Z

f(x)

ep(x)

eq(x)

q(x) dx

'

Z

q

Z

p

1

M

M

X

m=1

r

m

f(x

(m)

): (1.29)

where r
m

= ep(x

(m)

)=eq(x

(m)

). We can use the same sample set to evaluate the ratio Z

p

=Z

q

with the
result

Z

p

Z

q

=

1

Z

q

Z

ep(x) dx

=

Z

p(x)

q(x)

eq(x)

dx

'

1

L

L

X

m=1

r

m

(1.30)

and hence

hfi '

P

m

r

m

f(x

(m)

)

P

m

r

m

: (1.31)

As with rejection sampling, the success of the importance sampling approach depends crucially
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on how well the sampling distribution q(x) matches the desired distribution p(x). If, as is often the
case, p(x)f(x) is strongly varying and has a significant proportion of its mass concentrated over
relatively small regions of x space, then the set of importance weights fr

m

g may be dominated
by a few weights having large values, with the remaining weights being relatively insignificant.
Thus the effective sample size can be much smaller than the apparent sample size M . The problem
is even more severe if none of the samples fall in the regions where p(x)f(x) is large. In that
case the apparent variances of r

m

and r

m

f(x

m

) may be small even though the estimate of the
expectation may be severely wrong. Hence a major drawback of the importance sampling method
is the potential to produce results which are arbitrarily in error and with no diagnostic indication.
This also highlights a key requirement for the sampling distribution q(x), namely that it should not
be small or zero in regions where p(x) may be significant. In practice for continuous densities this
implies the requirement to use distributions q(x) which are heavy tailed.

We can apply the importance sampling technique to distributions defined by graphical models
in various ways. For discrete variables a very simple approach is called uniform sampling. The
joint distribution for a directed graph is defined by (??). Each sample from the joint distribution
is obtained by first setting those variables x

i

which are in the evidence set equal to their observed
values. Each of the remaining variables is then sampled independently from a uniform distribution
over the space of possible instantiations. To determine the corresponding weight associated with
a sample x(m) we note that the sampling distribution eq(x) is uniform over the possible choices for
x, and that ep(xje) = ep(x), where e denotes the evidence associated with instantiated variables, and
the equality follows from the fact that every sample x which is generated is necessarily consistent
with the evidence. Thus the weights r

m

are simply proportional to p(x). Note that the variables can
be sampled in any order. This approach can again yield poor results if the posterior distribution is
far from uniform.

An improvement on this approach is called likelihood weighted sampling and is based on ancestral
sampling of the variables. For each variable x

i

in turn, if that variable is in the evidence set then
it is just set to its instantiated value. If it is not in the evidence set then it is sampled from the
conditional distribution p(x

i

jx

�(i)

) in which the conditioning variables are set to their currently
sampled values. The weighting associated with the resulting sample x is given by

r(x) =

Y

i 62e

p(x

i

jx

�(i)

)

p(x

i

jx

�(i)

)

Y

i2e

p(x

i

jx

�(i)

)

1

=

Y

i2e

p(x

i

jx

�(i)

): (1.32)

This method can be further extended using self-importance sampling in which the importance sam-
pling distribution is continually updated to reflect the current estimated posterior distribution. A
further refinement called Markov blanket scoring distributes fractions of samples to the states of a
node in proportion to the probability of these values conditioned on the Markov blanket of a node.

1.1.5 Sampling-Importance-Resampling

The rejection sampling method discussed in Section ?? depends in part for its success on the deter-
mination of a suitable value for the constant k. For many examples of distributions p(x) and q(x) it
will be impractical to determine a suitable value for k in that any value which is sufficiently large
to guarantee a bound on the desired distribution will lead to impractically small acceptance rates.

As in the case of rejection sampling, the sampling-importance-resampling (SIR) approach also
makes use of a sampling distribution q(x), but avoids having to determine the constant k. There
are two stages to the scheme. In the first stage N samples x(1); : : : ; x(N) are drawn from q(x). Then
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in the second stage weights w(1)

; : : : ; w

(N) are constructed using

w

(n)

=

ep(x

(n)

)=q(x

(n)

)

P

N

n=1

ep(x

(n)

)=q(x

(n)

)

: (1.33)

A second set of M samples is drawn from the discrete distribution (x

(1)

; : : : ; x

(N)

) with probabili-
ties given by the weights (w(1)

; : : : ; w

(N)

).

The resulting M samples are only approximately distributed according to p(x), but the distri-
bution becomes correct in the limit N !1. To see this we note that the cumulative distribution of
the resampled values is given by

Pr(x � a) =

X

n:x

n

�a

w

(n)

=

P

N

n=1

I(x

n

� a)ep(x

n

)=q(x

n

)

P

N

n=1

ep(x

n

)=q(x

n

)

(1.34)

where I(:) is the indicator function (which equals 1 if it’s argument is true and 0 otherwise). Taking
the limit N ! 1, and assuming suitable regularity of the distributions, we can replace the sums
by integrals weighted according to the original sampling distribution q(x)

Pr(x � a) =

Z

I(x � a)[ep(x)=q(x)℄q(x) dx

Z

[ep(x)=q(x)℄q(x) dx

=

Z

I(x � a)ep(x) dx

Z

ep(x) dx

=

Z

I(x � a)p(x) dx (1.35)

which is the cumulative distribution function of p(x). Again we see that the normalization of p(x)
is not required.

For a finite value of N , and a given initial sample set, the resampled values will only approx-
imately be drawn from the desired distribution. As with rejection sampling, the approximation
improves as the sampling distribution q(x) gets closer to the desired distribution p(x). When
q(x) = p(x) the initial samples (x

(1)

; : : : ; x

(N)

) have the desired distribution, and the weights
w

n

= 1=N so that the resampled values also have the desired distribution.

If moments with respect to the distribution p(x) are required, then they can be evaluated di-
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rectly using the original samples together with the weights, since

hF (x)i =

Z

F (x)p(x) dx

=

Z

F (x)[ep(x)=q(x)℄q(x) dx

Z

[ep(x)=q(x)℄q(x) dx

'

N

X

n=1

F (x

n

)w

n

: (1.36)

1.1.6 Particle Filters

We can apply the re-sampling formalism of Section ?? to obtain a sequential Monte Carlo algo-
rithm known as the particle filter. Consider the class of distributions represented by the graphical
model in Figure ??. In many applications the observed data y

t

arrive sequentially and we wish

xt-1 xt

ytyt-1 yt+1

xt+1

Figure 1.10: Directed graphical model in which a sequence of observations y

1

; : : : ; y

t

; : : : is ex-
plained in terms of a hidden Markov chain of latent variables x

1

; : : : ; x

t

; : : :. Sampling from the
posterior distribution of the hidden variables can be performed sequentially using the particle fil-
ter algorithm.

to update the posterior distribution of the hidden variables in the light of each new observation.
The probabilistic model is specified in terms of the transition probability p(x

t

jx

t�1

) and the obser-
vation model p(y

t

jx

t

). This class of models includes the hidden Markov model (Chapter ??) and
the Kalman filter (Chapter ??) as special cases. The standard hidden Markov model uses discrete
distributions while the simplest form of the Kalman filter is based on linear-Gaussian distributions,
and so both models are amenable to exact solution, as discussed already.

There is, however, considerable interest in extending such models to more complex choices for
the conditional probability distributions, particularly for the observation model p(y

t

jx

t

). This can
lead to highly complex posterior distributions over the hidden variables x

t

which are no longer
analytically tractable. We therefore consider the application of sampling methods. In particular,
suppose we are given the observed values y

(t)

= (y

1

; : : : ; y

t

) and we wish to draw M samples from
the posterior distribution p(x

t

jy

(t)

), in order to evaluate the expectation of some function f(x) with
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respect to this distribution. Using Bayes’ theorem we have

hf(x

t

)i =

Z

f(x

t

)p(x

t

jy

(t)

) dx

t

=

Z

f(x

t

)p(x

t

jy

t

; y

(t�1)

) dx

t

=

Z

f(x

t

)p(y

t

jx

t

)p(x

t

jy

(t�1)

) dx

t

Z

p(y

t

jx

t

)p(x

t

jy

(t�1)

) dx

t

'

M

X

m=1

w

(m)

t

f(x

(m)

t

) (1.37)

where fx
(m)

t

g is a set of samples drawn from p(x

t

jy

(t�1)

), and we have made use of the conditional
independence property p(y

t

jx

t

; y

(t�1)

) = p(y

t

jx

t

) which follows from the graph in Figure ??. The

sampling weights fw
(m)

t

g are defined by

w

(m)

t

=

p(y

t

jx

(m)

t

)

P

M

m=1

p(y

t

jx

(m)

t

)

: (1.38)

Thus the posterior distribution p(x

t

jy

t

) is represented by the set of samples fx
(m)

t

g together with

the corresponding weights fw
(m)

t

g. Note that these weights satisfy 0 6 w

(m)

t

1 and
P

m

w

(m)

t

= 1.

Since we wish to find a sequential sampling scheme we suppose that a set of samples and
weights have been obtained at time step t and that we have subsequently observed the value of
y

t+1

and we wish to find the weights and samples at time step t + 1. We first sample from the
distribution p(x

t+1

jy

(t)

). This is straightforward since, again using Bayes’ theorem

p(x

t+1

jy

(t)

) =

Z

p(x

t+1

jx

t

; y

(t)

)p(x

t

jy

(t)

) dx

t

=

Z

p(x

t+1

jx

t

)p(x

t

jy

(t)

) dx

t

=

Z

p(x

t+1

jx

t

)p(x

t

jy

t

; y

(t�1)

) dx

t

=

Z

p(x

t+1

jx

t

)p(y

t

jx

t

)p(x

t

jy

(t�1)

) dx

t

Z

p(y

t

jx

t

)p(x

t

jy

(t�1)

) dx

t

=

X

m

w

(m)

t

p(x

t+1

jx

(m)

t

) (1.39)
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where we have made use of the conditional independence properties p(x
t+1

jx

t

; y

(t)

) = p(x

t+1

jx

t

)

and p(y

t

jx

t

; y

(t�1)

) = p(y

t

jx

t

) which follow from the application of the d-separation criterion to
the graph in Figure ??. The distribution given by (??) is a mixture distribution, and samples can
be drawn by choosing a component m with probability given by the mixing coefficients w(m) and
then drawing a sample from the corresponding component.

In summary, we can view each step of the particle filter algorithm as comprising two stages.
At time step t we have a sample representation of the posterior distribution p(x

t

jy

(t)

) expressed

as samples fx
(m)

t

g with corresponding weights fw
(m)

t

g. This can be viewed as a mixture repre-
sentation of the form (??). To obtain the corresponding representation for the next time step, we
first draw M samples from the mixture distribution (??), and then for each sample we use the new

observation y

t+1

to evaluate the corresponding weights wm
t+1

/ p(y

t+1

jx

(m)

t+1

). This is illustrated
schematically in Figure ??.

p x |y( )t t( )

p x |y( )t t( +1  )

p y |x( )t+1 t+1

p x |y( )t+1 t( +1  )
x

Figure 1.11: Schematic illustration of the operation of the particle filter. At time step t the posterior

p(x

t

jy

(m)

t

) is represented as a mixture distribution, shown schematically as circles whose sizes are
proportional to the weights wm

t

. A set of M samples is then drawn from this distribution, and the

new weights w
(m)

t+1

evaluated using p(y

t+1

jx

(m)

t+1

).

1.2 Markov Chain Monte Carlo

In the previous section we discussed the rejection sampling and importance sampling strategies
for evaluating expectations of functions, and we saw that they suffer from severe limitations par-
ticularly in spaces of high dimensionality. We turn in this section to a very general and powerful
framework called Markov chain Monte Carlo (MCMC) which allows sampling from a large class
of distributions, and which scales well with the dimensionality of the sample space.

As with rejection and importance sampling we again sample from a distribution q(x), known
as a proposal distribution, which differs from the desired distribution p(x). This time, however, we
maintain a record of the current state x(t), and the proposal distribution q(xjx

(t)

) depends on this
current state, and so the sequence of samples forms a Markov chain. Again, if we write p(x) =

ep(x)=Z, we assume that ep(x) can readily be evaluated for any given value of x, although the value
of Z may be unknown. The proposal distribution itself is chosen to be sufficiently simple that it
is straightforward to draw samples from it directly. At each cycle of the algorithm we generate a
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candidate sample x

� from the proposal distribution and then accept the sample according to an
appropriate criterion. In the basic Metropolis algorithm we assume that the proposal distribution
is symmetric, that is q(x

1

jx

2

) = q(x

2

jx

1

) for all values of x
1

and x

2

. The candidate sample is then
accepted with probability

A(x

�

; x

(t)

) = min

�

1;

ep(x

�

)

ep(x

(t)

)

�

: (1.40)

This can be achieved by choosing a random number u with uniform distribution over the unit
interval (0; 1) and then accepting the sample if A(x�; x(t)) > u. Note that if the step from x

(t) to x

�

causes an increase in the value of p(x) then the candidate point is certain to be kept.
If the candidate sample is accepted then x

(t+1)

= x

�, otherwise the candidate point x� is dis-
carded, x(t+1) is set to x

(t), and another candidate sample drawn from the distribution Q(x;x

(t)

).
This is in contrast to rejection sampling, where rejected samples are simple discarded. In the
Metropolis algorithm when a candidate point is rejected, the previous sample is included instead in
the final list of samples, leaded to multiple copies of samples1. As we shall see, as long as q(x

1

; x

2

)

is positive for any values of x
1

and x

2

(this is a sufficient but not necessary condition) the distribu-
tion of x(t) tends to p(x) as t!1. It should be emphasized, however, that the sequence x

1

; x

2

; : : :

is not a set of independent samples from p(x) since successive samples are highly correlated. If
we wish to obtain independent samples then we can discard most of the sequence and just retain
every N

th sample. For N sufficiently large the retained samples will for all practical purposes be
independent.

Figure ?? shows a simple illustrative example of sampling from two-dimensional normal distri-
bution using the Metropolis algorithm in which the proposal distribution is an isotropic Gaussian.

Further insight into the nature of Markov chain Monte Carlo algorithms can be gleaned by
looking at the properties of a specific example namely a simple random walk. Consider a state
space consisting of the integers, with probabilities

p(x

n+1

= x

n

) = 0:5

p(x

n+1

= x

n

+ 1) = 0:25

p(x

n+1

= x

n

� 1) = 0:25 (1.41)

where x
n

denotes the state at step n. If the initial state is x
1

= 0 then by symmetry the expected
state at time n will also be zero hx

n

i = 0, and similarly it is easily seen that hx2
n

i = n=2. Thus
after n steps the random walk has only travelled a distance which on average is proportional to
the square root of n. This square root dependence is typical of random walk behaviour and shows
that random walks are very inefficient in exploring the state space. As we shall see, a central goal
in designing Markov chain Monte Carlo methods is to avoid random walk behaviour.

1.2.1 Markov Chains

Before discussing Markov chain Monte Carlo methods in more detail, it is useful to study some
general properties of Markov chains in more detail. In particular we ask under what circumstances
will a Markov chain converge to the desired distribution. A first-order Markov chain is defined

1In a practical implementation only a single copy of each retained sample would be kept, along with an integer weighting
factor recording how many times that state was retained.
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1
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2
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Figure 1.12: A simple illustration using Metropolis algorithm to sample from a normal distribu-
tion whose one standard deviation contour is shown by the ellipse. The proposal distribution is
an isotropic normal distribution whose standard deviation is 0:2. Steps which are accepted are
shown as solid lines, while rejected steps are shown dashed. A total of 300 candidate samples are
generated, which include 85 rejections.

to be a series of random variables x
1

; : : : ; x

M

such that the following conditional independence
property holds for m 2 f1; : : : ;M � 1g

p(x

m+1

jx

1

; : : : ; x

m

) = p(x

m+1

jx

m

): (1.42)

This of course can be represented as a directed graph in the form of a chain. We can then spec-
ify the Markov chain by giving the probability distribution for the initial variable p

0

(x) together
with the conditional probabilities for subsequent variables in the form of transition probabilities
T

m

(x

m

; x

m+1

) � p(x

m+1

jx

m

). A Markov chain is called homogeneous if the transition probabili-
ties are the same for all m. Initially we will restrict attention to finite, discrete state spaces for the
variables, and discuss the extension to countably infinite and continuous state spaces later.

The marginal probability for a particular variable can be expressed in terms of the marginal
probability for the previous variable in the chain in the form

p(x

m+1

) =

X

x

m

p(x

m+1

jx

m

)p(x

m

): (1.43)

A distribution is said to be invariant, or stationary, with respect to a Markov chain if each step in
the chain leaves that distribution invariant. Thus, for a homogeneous Markov chain with transition
probabilities T (x; x0), the distribution p

�

(x) is invariant if

p

�

(x) =

X

x

0

T (x

0

; x)p

�

(x

0

): (1.44)

Note that a given Markov chain may have more than one invariant distribution. For instance, if
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the transition probabilities are given by the identity transformation, then any distribution will be
invariant.

A sufficient (but not necessary) condition for ensuring that the required distribution p(x) is
invariant, is to choose the transition probabilities to satisfy the property of detailed balance, defined
by

p

�

(x)T (x; x

0

) = p

�

(x

0

)T (x

0

; x) (1.45)

for the particular distribution p

�

(x). It is easily seen that a transition probability which satisfies
detailed balance with respect to a particular distribution will leave that distribution invariant, since

X

x

0

p

�

(x

0

)T (x

0

; x) =

X

x

0

p

�

(x)T (x; x

0

) = p

�

(x)

X

x

0

p(x

0

jx) = p

�

(x): (1.46)

A Markov chain which respects detailed balance is said to be reversible.

Our goal is to use Markov chains to sample from a given distribution. We can achieve this if
we set up a Markov chain such that the desired distribution is invariant. However, we must also
require that for, m ! 1, the distribution p

m

(x) converges to the required invariant distribution
p

�

(x), irrespective of the choice of initial distribution p

0

(x). This property is called ergodicity, and
the invariant distribution is then called the equilibrium distribution. Clearly an ergodic Markov
chain can have only one equilibrium distribution.

In Appendix ?? we show that a homogeneous Markov chain will be ergodic, subject only to
weak restrictions on the invariant distribution and the transition probabilities.

In practice we often construct the transition probabilities from a set of ‘base’ transitionsB
1

; : : : ; B

n

.
This can be achieved through a mixture distribution of the form

T (x; x

0

) =

n

X

k=1

�

k

B

k

(x; x

0

) (1.47)

for some set of mixing coefficients �
1

; : : : ; �

n

satisfying �

k

� 0 and
P

k

�

k

= 1. Alternatively, the
base transitions may be combined through successive application, so that

T (x; x

0

) =

X

x

1

: : :

X

x

n�1

B

1

(x; x

1

) : : : B

n�1

(x

n�2

; x

n�1

)B

n

(x

n�1

; x

0

): (1.48)

If a distribution is invariant with respect to each of the base transitions, then obviously it will
also be invariant with respect to either of the T (x; x

0

) given by (??) or (??). For the case of the
mixture (??), if each of the base transitions satisfies detailed balance, then the mixture transition
T will also satisfy detailed balance. This does not hold for the transition probability constructed
using (??), although by symmetrizing the order of application of the base transitions, in the form
B

1

; B

2

; : : : ; B

n

; B

n

; : : : ; B

2

; B

1

, detailed balance can be restored.

A common example of the use of composite transition probabilities is where each base transi-
tion changes only a subset of the variables. Clearly each base transition itself will not be ergodic.
However, the composite probability will be ergodic, as long as condition (??) is satisfied.
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1.2.2 The Metropolis-Hastings Algorithm

Earlier we introduced the basic Metropolis algorithm, without actually demonstrating that it sam-
ples from the required distribution. Before giving a proof we first discuss a generalization, known
as the Metropolis-Hastings algorithm, to the case where the proposal distribution is no longer a
symmetric function of its arguments. In particular at step n of the algorithm, in which the current
state is x

n

, we draw a sample x� from the distribution q

k

(x; x

n

) and then accept it with probability
A

k

(x

�

; x

n

) where

A

k

(x

0

; x) = min

�

1;

p(x

0

)q

k

(x

0

; x)

p(x)q

k

(x; x

0

)

�

: (1.49)

Here k labels the members of the set of possible transitions being considered. This is generally
referred to as the Metropolis-Hastings algorithm. Obviously for a symmetric proposal distribution
this reduces to the standard Metropolis criterion given by (??).

We can show that p(x) is an invariant distribution of the Markov chain defined by the Metropolis-
Hastings algorithm by showing that detailed balance, defined by (??), is satisfied. Using (??) we
have
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= min (p(x
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(x; x

0
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as required.

It is worth noting that the evaluation of the acceptance criterion (??) does not require knowledge
of the normalizing constant Z in the probability distribution p(x) = ep(x)=Z.

The specific choice of proposal distribution can have a marked effect on the performance of
the algorithm. For continuous state spaces a common choice is a Gaussian centered on the current
state, leading to an important trade-off in determining the width parameter of this distribution. If
the width is small then the proportion of accepted transitions will be high, but progress through
the state space takes the form of a slow random walk leading to very long correlation times. How-
ever, if the width parameter is large then the rejection rate will be high since, in the kind of complex
problems we are considering, many of the proposed steps will be to states for which the probability
p(x) is low. Consider a multi-variate distribution p(x) having strong correlations between the com-
ponents of x, as illustrated in Figure ??. The scale � of the proposal distribution should be as large
as possible without incurring high rejection rates. This suggests that � should be of the same order
as the smallest length scale �

min

. The system then explores the distribution along the more ex-
tended direction by means of a random walk, and so the number of steps to arrive at a state which
is more or less independent of the original state is of order (�

max

=�

min

)

2. In fact in two dimensions
the increase in rejection rate as � increases is offset by the larger steps sizes of those transitions
which are accepted, and more generally for a multivariate Gaussian the number of steps required
to obtain independent samples scales like (�

max

=�

2

)

2 where �
2

is the second smallest standard de-
viation. These details aside, it remains the case that if the length scales over which the distributions
varies are very different in different directions then the Metropolis Hastings algorithm can lead to
very slow convergence.
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smin

smax

r

Figure 1.13: Schematic illustration of the use of an isotropic Gaussian proposal distribution (circle)
to sample from a correlated multivariate Gaussian distribution (dashed ellipse) having very differ-
ent standard deviations in different directions, using the Metropolis-Hastings algorithm. In order
to keep the rejection rate low the scale � of the proposal distribution should be of the order of the
smallest standard deviation �

min

, which leads to random walk behaviour in which independent
states are separated by roughly (�

max

=�

min

)

2 steps where �
max

is the largest standard deviation.

1.3 Gibbs Sampling

Gibbs sampling is a simple and widely applicable Markov chain Monte Carlo algorithm, which
has been used extensively in the context of probabilistic graphical models. As we shall see, Gibbs
sampling can be seen as a special case of the Metropolis-Hastings algorithm.

Consider the distribution p(x) = p(x

1

; : : : ; x

d

) from which we wish to sample, and suppose that
we have chosen some initial state for the Markov chain. Each step of the Gibbs sampling procedure
involves replacing the value of one of the variables by a value drawn from the distribution of
that variable conditioned on the values of the remaining variables. Thus we replace x

i

by a value
drawn from the distribution p(x

i

jfx

j 6=i

g), where x
i

denotes the ith component of x. This procedure
is repeated either by cycling through the variables in some particular order, or by choosing the
variable to be updated at each step at random from some distribution.

For example, suppose we have a distribution p(x

1

; x

2

; x

3

) over three variables, and at step �

of the algorithm we have selected values x
(�)

1

; x

(�)

2

and x

(�)

3

. We first replace x
(�)

1

by a new value

x

(�+1)

1

obtained by sampling from the conditional distribution

p(x

1

jx

(�)

2

; x

(�)

3

): (1.51)

Next we replace x
(�)

2

by a value x
(�+1)

2

obtained by sampling from the conditional distribution

p(x

2

jx

(�+1)

1

; x

(�)

3

) (1.52)

so that the new value for x
1

is used straight away in subsequent sampling steps. Then we update

x

3

with a sample x
(�+1)

3

drawn from

p(x

3

jx

(�+1)

1

; x

(�+1)

2

) (1.53)

and so on, cycling through the three variables in turn. The basic Gibbs sampling algorithm is
summarized in Figure ??.

To show that this procedure samples from the required distribution we first of all note that
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Figure 1.14: Psuedo-code for the Gibbs sampling algorithm.

the distribution p(x) is an invariant of each the Gibbs sampling steps individually, and hence of
the whole Markov chain. This follows from the fact that when we sample from p(x

i

jfx

j 6=i

g) the
marginal distribution p(fx

j 6=i

g) is clearly invariant since the values of the fx
j 6=i

g are unchanged.
Also, each step by definition samples from the correct conditional distribution p(x

i

jfx

j 6=i

g). Since
these conditional and marginal distributions together specify the joint distribution, we see that the
joint distribution is itself invariant.

The second requirement to be satisfied in order that the Gibbs sampling procedure samples
from the correct distribution is that it be ergodic. A sufficient condition for ergodicity is that none
of the conditional distributions be anywhere zero. If this is the case then any point in x space
can be reached from any other point in a finite number of steps involving one update of each
of the component variables. If this requirement is not satisfied, so that some of the conditional
distributions have zeros, then ergodicity, if it applies, must be proven explicitly.

The distribution of initial states must also be specified in order to complete the algorithm, al-
though samples drawn after many iterations should become independent of this distribution. Of
course successive samples from the Markov chain will be highly correlated, and so to obtain sam-
ples which are nearly independent it will be necessary to sub-sample the sequence.

Where appropriate we can generalize the Gibbs procedure slightly to sample from sets of vari-
ables, conditioned on the remaining variables, at each step. Note that these sets do not need to be
disjoint.

We can obtain the Gibbs sampling procedure as a particular instance of the Metropolis-Hastings
algorithm as follows. Consider a Metropolis-Hastings sampling step involving the group of vari-
able x

k

in which the remaining variables x
�k

remain fixed, and for which the transition probability
q

k

(x; x

0

) is given by p(x

0

k

jx

�k

). We note that x0
�k

= x

�k

since these components are unchanged by
the sampling step. Also, p(x) = p(x

k

jx

�k

)p(x

�k

). Thus the factor which determines the acceptance
probability in the Metropolis-Hastings (??) is given by
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= 1: (1.54)

Thus the Metropolis-Hastings steps are always accepted, and therefore this choice of proposal dis-
tribution corresponds to the Gibbs sampling algorithm.

The practical applicability of Gibbs sampling depends on the ease with which samples can be
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drawn from conditional distributions p(x
k

jx

�k

). In the case of graphical models, the conditional
distributions for individual nodes depend only on the variables in the corresponding Markov blan-
kets, as illustrated in Figure ??. For directed graphs, a very broad choice of conditional distribu-

(a) (b)

Figure 1.15: The Gibbs sampling requires samples to be drawn from the conditional distribution of
a variable conditioned on the remaining variables. For graphical models, this conditional distribu-
tion is a function only of the states of the nodes in the Markov blanket. In the case of an undirected
graph (a) this comprises the set of neighbours while for a directed graph (b) the Markov blanket
comprises the parents, the children and the co-parents.

tions for the individual nodes conditioned on their parents will lead to conditional distributions
for Gibbs sampling which are log concave. The adaptive rejection sampling methods discussed
in Section ?? therefore provide a framework for Monte Carlo sampling from directed graphs with
broad applicability.

As with the Metropolis algorithm, we can gain some insight into the behaviour of Gibbs sam-
pling by investigating its application to a Gaussian distribution. Consider a correlated Gaussian in
two variables, as illustrated in Figure ??, having a conditional distribution of width l and a marginal
distribution of width L. The typical step size is governed by the conditional distributions and will
be of order l. Since the state evolves according to a random walk, the number of steps needed to ob-
tain independent samples from the distribution will be of order (L=l)2. Of course if the Gaussian
distribution were uncorrelated then the Gibbs sampling procedure would be optimally efficient.
For this simple problem we could rotate the coordinate system in order to decorrelate the variable,
however, in practical applications it will generally be infeasible to find such transformations.

One approach to reducing random walk behaviour in Gibbs sampling is called over-relaxation.
In its original form this applies to problems for which the conditional distributions are Gaussian.
This represents a more general class of distributions than the multi-variate Gaussian, since for ex-
ample the non-Gaussian distribution p(x; y) / exp(�x

2

y

2

) has Gaussian conditional distributions.
At each step of the Gibbs sampling algorithm the conditional distribution for a particular compo-
nent x

i

has some mean �

i

and some variance �2
i

. In the over-relaxation framework the value of x
i

is replaced with

x

0

i

= �

i

+ �(x

i

� �

i

) + �

i

(1� �

2

i

)

1=2

� (1.55)

where � is a Gaussian random variate with zero mean and unit variance, and � is a parameter such
that �1 < � < 1. For � = 0 the method is equivalent to standard Gibbs sampling. When � is
negative the step is biased to the opposite side of the mean. It is easily seen that this step leaves the
desired distribution invariant since if x

i

has mean �

i

and variance �2
i

, then so too does x0
i

. Also it
is clear that if the original Gibbs sampling is ergodic, then the over-relaxed version will be ergodic
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x1

x2

L

l

Figure 1.16: Illustration of Gibbs sampling by alternate updates of two variables whose distribu-
tion is a correlated Gaussian. The step size is governed by standard deviation of the conditional
distribution, and is O(l), leading to slow progress in the direction of elongation of the distribution.
The number of steps needed to obtain an independent sample from the distribution is O((L=l)

2

).

also. Thus the effect of over-relaxation is to tend to produce directed motion through state space
when the variables are highly correlated. The framework of ordered over-relaxation generalizes this
approach to non-Gaussian distributions.

The simplicity of Gibbs sampling allows it to be applied to a broad range of models. In fact
it has been used as the basis for a general purpose software package BUGS (‘Bayesian inference
Using Gibbs Sampling’) for sampling from models specified as directed acyclic graphs. The con-
ditional distribution for each node is dependent only on the states of nodes in the corresponding
Markov blanket. If the graph is constructed using distributions from the exponential family, and if
the parent-child relationships preserve conjugacy, then the full conditional distributions arising in
Gibbs sampling will take the same form as the original conditional distributions (conditioned on
the parents) defining each node, and so standard sampling techniques can be employed. In general
the full conditional distributions will be of a complex form that does not permit the use of standard
sampling algorithms. However, these conditionals will be log concave and sampling can be done
efficiently using adaptive rejection sampling (assuming the corresponding variable is a scalar).

Because the basic Gibbs sampling technique considers one variable at a time, there are strong
dependencies between successive samples. At the opposite extreme, if we could draw samples
directly from the joint distribution (an operation that we are supposing is intractable) then suc-
cessive samples would be independent. We can hope to improve on the simple Gibbs sampler by
sampling successively from groups of variables rather than individual variables. This is achieved
in the blocking Gibbs sampling algorithm by choosing blocks of variables, not necessarily disjoint,
and then sampling jointly from the variables in each block in turn, conditioned on the remaining
variables. This can be done in a way that preserves tractability while leading to a large block by
starting with the junction tree for the full graph in which the block comprises the complete set of
variables, and then removing variables from the block until a tractable structure is obtained.
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1.4 Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensitivity to step
size. If this is too small the result is slow decorrelation due to random walk behaviour while if
it is too large the result is inefficiency due to a high rejection rate. The technique of slice sampling
provides an adaptive step size which is automatically adjusted to match the characteristics of the
distribution. Again it requires that we be able to evaluate the unnormalized distribution ep(x).

Slice sampling involves augmenting x with an additional variable u and then drawing samples
from the joint (x; u) space. We shall see another example of this approach when we discuss hybrid
Monte Carlo in Section ??. As with rejection sampling, the goal is to sample uniformly from the
volume under the surface defined by bp(x; u), in other words to sample from the distribution given
by

bp(x; u) =

(

1=Z if 0 6 u 6 p(x)

0 otherwise

where Z =

R

ep(x) dx. The marginal distribution over x is given by

Z

bp(x; u) du =

Z

ep(x)

0

1

Z

du =

ep(x)

Z

= p(x)

and so we can sample from p(x) by sampling from bp(x; u) and then ignoring the u values. This
can be achieved by alternately sampling x and u. Given the value of x we evaluate ep(x) and then
sample u uniformly in the range 0 6 u 6 ep(x), which is straightforward. Then we fix u and sample
x uniformly from the ‘slice’ through the distribution defined by fx : ep(x) > ug. This is illustrated
in Figure ??(a).

x

(a)

u

x
( )t

p x( )~

x

xmin xmax

(b)

u

x
( )t

p x( )~

Figure 1.17: Illustration of slice sampling. (a) For a given value x(�), a value of u is chosen uniformly
in the region 0 6 u 6 ep(x

(�)

), which defines a ‘slice’ through the distribution, shown by the solid
horizontal lines. (b) Since sampling directly from a slice is infeasible, a new sample of x is drawn
from a region x

min

6 x 6 x

max

which contains the previous value x(�).

In practice it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme which leaves the uniform distribution under bp(x; u) invariant,
which can be achieved by ensuring that detailed balance is satisfied. Here we consider the case of
a univariate x.

Suppose the current value of x is denoted x

(�) and that we have obtained a corresponding
sample u. The next value of x is sampled uniformly from a region x

min

6 x 6 x

max

which contains
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x

(�). If the sample chosen lies within the slice, in other words if ep(x) > u, then the sample is
retained and forms x(�+1).

It is in the choice of the region x

min

6 x 6 x

max

that the adaptation to the characteristic length
scales of the distribution takes place. We want the region to encompass as much of the slice as
possible so as to allow large moves in x space, while having as little as possible of this region lying
outside the slice, since this makes the sampling less efficient.

One approach to the choice of region involves starting with a region containing x

(�) having
some width w and then testing each of the end points to see if they lie within the slice. If either
end point does not then the region is extended in that direction by increments of value w until the
endpoint lies outside the region. A candidate value x0 is then chosen uniformly from this region
and if it lies within the slice then it forms x(�+1). If it lies outside the slice then the region is shrunk
such that x0 forms an end point and such that the region still contains x(�). Then another candidate
point is drawn uniformly from this reduced region and so on, until a value of x is found which lies
within the slice.

Slice sampling can be applied to multivariate distributions by repeatedly sampling each vari-
able in turn, in the manner of Gibbs sampling. This requires that we are able to compute, for each
component x

i

, a function which is proportional to p(x
i

jfx

j

g

j 6=i

).

1.5 The Hybrid Monte Carlo Algorithm

As we have already noted, one of the major limitations of the Metropolis algorithm is that it can
exhibit random walk behaviour whereby the distance traversed through the state space grows only
as the square root of the number of steps. The problem cannot be resolved simply by taking bigger
steps as this leads to a high rejection rate.

In this section we introduce a more sophisticated class of transitions based on an analogy with
physical systems and which has the property of being able to make large changes to the system
state while keeping the rejection probability small. It is applicable to distributions over continuous
variables for which we can readily evaluate the gradient of the log probability with respect to the
state variables. We discuss the dynamical systems framework in Section ??, and then in Section ??
we explain how this may be combined with the Metropolis algorithm to yield the powerful hybrid
Monte Carlo algorithm.

1.5.1 Dynamical Systems

The dynamical approach to stochastic sampling has its origins in algorithms for simulating the
behaviour of physical systems evolving under Hamiltonian dynamics. In a Markov chain Monte
Carlo simulation the goal is to sample from a given probability distribution p(x). The framework of
Hamiltonian dynamics is exploited by casting the probabilistic simulation in the form of a Hamil-
tonian system. In order to remain in keeping with the literature in this area we make use of the
relevant dynamical systems terminology where appropriate. This will be defined as we go along,
and no background knowledge of the physical basis for this formalism is required.

The dynamics which we consider corresponds to the evolution of the state variable x = fx

i

g

under continuous time, which we denote by � . Classical dynamics is described by second order
differential equations over time (acceleration is proportional to the applied force). We can decom-
pose a second order equation into two coupled first order equations by introducing intermediate
momentum variables r corresponding to the rate of change of the state variables x. Thus

r

i

=

dx

i

d�

(1.56)
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where the x

i

can be regarded as position variables in this dynamics perspective. Thus for each
position variable there is a corresponding momentum variable, and the joint space of position and
momentum variables is called phase space.

Without loss of generality we can write the probability distribution p(x) in the form

p(x) =

1

Z

exp (�E(x)) (1.57)

where E(x) is interpreted as the potential energy of the system when in state x. The system accelera-
tion is the rate of change of momentum and is given by the applied force which itself is the negative
gradient of the potential energy

dR

i

d�

= �

�E(x)

�x

i

: (1.58)

It is convenient to reformulate this dynamical system using the Hamiltonian framework. To do
this, we first define the kinetic energy by

K(r) =

1

2

krk

2

=

1

2

X

i

r

2

i

: (1.59)

The total energy of the system is then the sum of its potential and kinetic energies

H(x; r) = E(x) +K(r) (1.60)

which is called the Hamiltonian function. Using (??), (??), (??) and (??) we can now express the
dynamics of the system in terms of the Hamiltonian equations given by

dx

i

d�

=

�H

�r

i

(1.61)

dr

i

d�

= �

�H

�x

i

: (1.62)

(1.63)

During the evolution of this dynamical system, the value of the Hamiltonian H is constant, as is
easily seen by differentiation

dH

d�

=

X

i

�

�H

�x

i

dx

i

d�

+

�H

�r

i

dr

i

d�

�

=

X

i

�

�H

�x

i

�H

�r

i

�

�H

�r

i

�H

�x

i

�

= 0: (1.64)

A second important property of Hamiltonian dynamical systems, known as Liouville’s Theorem,
is that they preserve volume in phase space. This can be seen by noting that the flow field (rate of
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change of location in phase space) is given by

V =

�

dx

d�

;

dr

d�

�

(1.65)

and that the divergence of this field vanishes

div V =

X

i

�
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�x

i

�H

�x

i

+

�

�r

i

�H

�r

i

�

=

X
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�
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2

H

�x

i

�r

i

�

�

2

H

�r

i

�x

i

�

= 0: (1.66)

Now consider the joint distribution over phase space whose total energy is the Hamiltonian,
i.e. the distribution given by

p(x; r) =

1

Z

H

exp(�H(x; r)): (1.67)

Using the two results of conservation of volume and conservation of H it follows that the Hamil-
tonian dynamics will leave p(x; r) invariant. This can be seen by considering a small region of
phase space over which H is approximately constant. If we follow the evolution of the Hamilto-
nian equations for a finite time, then the volume of this region will remain unchanged as will the
value of H in this region, and hence the probability density, which is a function only of H , will also
be unchanged.

Although H is invariant, the values of x and r will vary, and so by integrating the Hamiltonian
dynamics over a finite time duration it becomes possible to make large changes to x in a systematic
way which avoids random walk behaviour.

Evolution under the Hamiltonian dynamics will not, however, sample ergodically from p(x; r)

since the value of H is constant. In order to make arrive at an ergodic sampling scheme we can
introduce additional moves in phase space which change the value of H while also leaving the
distribution p(x; r) invariant. The simplest way to achieve this is to replace the value of r with
one drawn from its distribution conditioned on x. This can be regarded as a Gibbs sampling step,
and hence from Section ?? we see that this leaves the desired distribution invariant. Noting that x
and r are independent in the distribution p(x; r) we see that the conditional distribution of r is a
Gaussian from which it is straightforward to sample.

In a practical application of this approach we have to address the problem of performing a
numerical integration of the Hamiltonian equations. This will necessarily introduce numerical
errors and so we should devise a scheme which minimizes the impact of such errors. In fact it turns
out that integration schemes can be devised for which Liouville’s theorem still holds exactly. This
property will be important in the hybrid Monte Carlo algorithm which is discussed in Section ??.
One scheme for achieving this is called the leapfrog discretization and involves alternately updating
discrete-time approximations bx and br to the position and momentum variables using

br

i

(� + �=2) = br

i

(�) �

�

2

�E

�x

i

(bx(�)) (1.68)

bx

i

(� + �) = bx

i

(�) + �br

i

(� + �=2) (1.69)

br

i

(� + �) = br

i

(� + �=2)�

�

2

�E

�x

i

(bx(� + �)): (1.70)
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We see that this takes the form of a half-step update of the momentum variables with step size �=2,
followed by a full-step update of the position variables with step size �, followed by a second half-
step update of the momentum variables. If several leapfrog steps are applied in succession, it can
be seen that half-step updates to the momentum variables can be combined into full-step updates
with step size �. The successive updates to position and momentum variables then leapfrog over
each other. In order to advance the dynamics by a time interval � we need to take �=� steps. The
error involved in the discretized approximation to the continuous time dynamics will go to zero,
assuming a smooth function E(x), in the limit �! 0. However, for a non-zero � as used in practice,
some residual error will remain. We shall see in Section ?? how the effects of such errors can be
eliminated in the hybrid Monte Carlo algorithm.

In summary then, the Hamiltonian dynamical approach involves alternating between a series of
leapfrog updates and a re-sampling of the momentum variables from their marginal distribution.

Note that the Hamiltonian dynamics method, unlike the basic Metropolis algorithm, is able to
make use of information about the gradient of the log probability distribution as well as about the
distribution itself. An analogous situation is familiar from the domain of function optimization.
In most cases where gradient information is available it is highly advantageous to make use of it.
Informally, this follows from the fact that in a space of dimension d the additional computational
cost of evaluating a gradient compared to evaluating the function itself will typically be a fixed
factor independent of d, whereas the gradient vector conveys d pieces of information compared to
the one piece of information given by the function itself.

1.5.2 Hybrid Monte Carlo

As we discussed in the previous section, for a non-zero step size � the discretization of the leapfrog
algorithm will introduce errors into the integration of the Hamiltonian dynamical equations. Hy-
brid Monte Carlo combines Hamiltonian dynamics with the Metropolis algorithm and thereby
removes any bias associated with the discretization.

Specifically, the algorithm uses a Markov chain consisting of alternate stochastic updates of
the momentum variables r and Hamiltonian dynamical updates using the leapfrog algorithm. Af-
ter each application of the leapfrog algorithm the resulting candidate state is accepted or rejected
according to the Metropolis criterion based on the value of the Hamiltonian H . Thus if (x; r) is
the initial state and (x

�

; r

�

) is the state after the leapfrog integration, then this candidate state is
accepted with probability

min (1; expfH(x; r)�H(x

�

; r

�

)g) : (1.71)

If the leapfrog integration were to simulate the Hamiltonian dynamics perfectly, then every
such candidate step would automatically be accepted since the value of H would be unchanged.
Due to numerical errors, the value ofH may sometimes decrease, and we would like the Metropolis
criterion to remove any bias due to this effect and ensure that the resulting samples are indeed
drawn from the required distribution. In order for this to be the case, we need to ensure that the
update equations corresponding to the leapfrog integration satisfy detailed balance (??). This is
easily achieved by modifying the leapfrog scheme as follows. Before the start of each leapfrog
integration sequence we choose at random, with equal probability, whether to integrate forwards
in time (using step size �) or backwards in time (using step size ��). We first note that the leapfrog
integration scheme (??)–(??) is time-reversible, so that integration for L steps using stepsize�� will
exactly undo the effect of integration for L steps using stepsize �.

Next we show that the leapfrog integration preserves phase space volume exactly. This follows
from the fact that each step in the leapfrog scheme updates either the x

i

variable or the r
i

variable
by an amount which is a function only of the other variable. As shown in Figure ?? this has the
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effect of shearing a region of phase space while not altering its volume.

xi

ri r 'i

x 'i

Figure 1.18: Each step of the leapfrog algorithm (??)–(??) modifies either a position variable x
i

or a
momentum variable r

i

. Since the change to one variable is a function only of the other, any region
in phase space will be sheared without change of volume.

Finally, we use these results to show that detailed balance holds. Consider a small region R of
phase space which, under a sequence of L leapfrog iterations of step size �, maps to a region R0.
Using conservation of volume under the leapfrog iteration we see that if R has volume ÆV then
so too will R0. If we choose an initial point from the distribution (??) and then update using L

leapfrog interactions, the probability of the transition going from R to R0 is given by

1

Z

H

exp(�H(R))ÆV

1

2

min f1; exp(�H(R) +H(R

0

))g : (1.72)

where the factor of 1=2 arises from the probability of choosing to integrate with a positive step
size rather than a negative one. Similarly, the probability of starting in region R0 and integrating
backwards in time to end up in region R is given by

1

Z

H

exp(�H(R

0

))ÆV

1

2

min f1; exp(�H(R

0

) +H(R))g : (1.73)

It is easily seen that the two probabilities (??) and (??) are equal, and hence detailed balance holds2.
It is not difficult to construct examples for which the leapfrog algorithm returns to its starting

position after a particular number of iterations. In such cases the random replacement of the mo-
mentum values before each leapfrog integration will not be sufficient to ensure ergodicity since
the position variables will never be updated. Such phenomena are easily avoided by choosing the
magnitude of the step size at random from some small interval, before each leapfrog integration.

We can gain some insight into the behaviour of the hybrid Monte Carlo algorithm by consid-
ering its application to a multivariate Gaussian. For convenience consider a Gaussian distribution
p(x) with independent components, for which the Hamiltonian is given by

H(x; r) =

1

2

X

i

1

�

2

i

x

2

i

+

1

2

X

i

r

2

i

: (1.74)

Our conclusions will be equally valid for a Gaussian distribution having correlated components

2This proof ignores any overlap between the regionsR andR0 , but is easily generalized to allow for such overlap.
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since the hybrid Monte Carlo algorithm exhibits rotational isotropy. During the leapfrog integra-
tion each pair of phase space variables x

i

; r

i

evolves independently. However, the acceptance or
rejection of the candidate point is based on the value of H which depends on the values of all
of the variables. Thus, a significant integration error in any one of the variables could lead to a
high probability of rejection. In order that the discrete leapfrog integration be a reasonably good
approximation to the true continuous-time dynamics it is necessary for the leapfrog integration
scale � to be smaller than the shortest length-scale over which the potential is varying significantly.
This is governed by the smallest value of �

i

which we denote by �

min

. Recall that the goal of the
leapfrog integration in hybrid Monte Carlo is move to a substantial distance through phase space
to a new state which is relatively independent of the initial state and still achieve a high probability
of acceptance. In order to achieve this the leapfrog integration must be continued for a number of
iterations of order �

max

=�

min

.

By contrast, consider the behaviour of a simple Metropolis algorithm with an isotropic Gaussian
proposal distribution of variance s2. In order to avoid high rejection rates the value of s must be
of order �

min

. The exploration of state space then proceeds by a random walk, and takes of order
(�

max

=�

min

)

2 steps to arrive at a roughly independent state.

1.6 Estimating the Partition Function

As we have seen, most of the sampling algorithms considered in this chapter require only the
functional form of the probability distribution up to a multiplicative constant. Thus if we write

p

E

(x) =

1

Z

E

exp(�E(x)) (1.75)

then the value of the partition function Z is not needed in order to draw samples from p(x). How-
ever, knowledge of the value of Z can be useful for Bayesian model comparison, and so it is of
interest to consider how its value might be obtained. We assume that direct evaluation by sum-
ming, or integrating, the function exp(�E(x)) over the state space of x is intractable.

For model comparison it is actually the ratio of the partition functions for two models which is
required. Multiplication of this ratio by the ratio of prior probabilities gives the ratio of posterior
probabilities, which can then be used for model selection or model averaging.

One way to estimate a ratio of partition functions is to use importance sampling from a distri-
bution with energy function G(x)

Z

E

Z

G

=

P

x

exp(�E(x))

P

x

exp(�G(x))

=

P

x

exp(�E(x) +G(x)) exp(�G(x))

P

x

exp(�G(x))

= hexp(�E +G)i

G

'

X

i

exp(�E(x

i

) +G(x

i

)) (1.76)

where fx
i

g are samples drawn from the distribution defined by p
G

(x). If the distribution p

G

is one
for which the partition function can be evaluated analytically, for example a Gaussian, then the
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absolute value of Z
E

can be obtained.

This approach will only yield accurate results if the importance sampling distribution p

G

is
closely matched to the distribution p

E

, so that the ratio E(x)=G(x) does not have wide varia-
tions. In practice suitable analytically specified importance sampling distributions cannot readily
be found for the kinds of complex models considered in this book.

An alternative approach is therefore to use the samples obtained from a Markov chain to define
the importance sampling distribution. If the transition probability for the Markov chain is given by
T (x; x

0

), and the sample set is given by x

1

; : : : ; x

N

, then the sampling distribution can be written
as

1

Z

G

exp(�G) =

N

X

n=1

T (x

n

; x) (1.77)

which can be used directly in (??).

Methods for estimating the ratio of two partition functions require for their success that the two
corresponding distributions be reasonably closely matched. This is especially problematic if we
wish to find the absolute value of the partition function for a complex distribution since it is only
for relatively simple distributions that the partition function can be evaluated directly, and so at-
tempting to estimate the ratio of partition functions directly is unlikely to be successful. This prob-
lem can be tackled using a technique known as chaining which involved introducing a succession
of intermediate distributions P

2

; : : : ; P

M�1

which interpolate between a simple distribution P

1

(x)

for which we can evaluate the normalization Z

1

, and the desired complex distribution P

M

(x). We
then have

Z

M

Z

1

=

Z

2

Z

1

Z

3

Z

2

� � �

Z

M

Z

M�1

(1.78)

in which the intermediate ratios can be determined using Monte Carlo methods as discussed above.
One way to construct such a sequence of intermediate systems is to use an energy function con-
taining a continuous parameter 0 � � � 1 which interpolates between the two distributions

E

�

(x) = (1� �)E

1

(x) + �E

M

(x): (1.79)

If the intermediate ratios in (??) are to be found using Monte Carlo, it may be more efficient to use
a single Markov chain run than to restart the Markov chain for each ratio. In this case the Markov
chain is run initially for the system P

1

and then after some suitable number of steps moves on to
the next distribution in the sequence. Note, however, that the system must remain close to the
equilibrium distribution at each stage.

1.7 Simulated Annealing

In order to apply sampling methods to inference tasks involving graphical models, a variety of
matters must be addressed. Our goal here is not to provide an extensive practitioners manual, but
rather to highlight some of the more significant issues.

Since a Markov chain takes some time to reach its equilibrium distribution it is common to
discard the values obtained from the early part of the chain (called the ‘burn in’ period). This
highlights an important trade-off in running Markov chain samplers with limited computational
resources. For the same computational expense it will be possible to run one long Markov chain,
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or alternatively several short ones. With a single chain there is only one burn in period. However,
such a chain may become stuck exploring a relatively isolated region of the distribution while
failing to discover other regions of significant probability.

An important concern in practice is the speed of convergence of a Markov chain to its equi-
librium distribution, as well as the decorrelation time between independent samples. This can
become particularly problematic in situations where the distribution has relatively isolated regions
of high probability such that transitions from one region to another are infrequent. One technique
for addressing this problem is called simulated annealing. Consider the problem of sampling from a
distribution of the form

p(x) =

1

Z

exp(�E(x)): (1.80)

We first modify the distribution by introduction of a temperature parameter T to give

p(x) =

1

Z(T )

exp(�E(x)=T ) (1.81)

so that the original distribution corresponds to T = 1. The effect of using values of T > 1 is to
deemphasize the dynamic range between regions of high and low probability and hence increase
the probability of transition from one high probability region to another through an intervening
region of low probability. During the course of the simulation the value of T is gradually reduced
from a high value down to T = 1. Note that this procedure no longer samples from the correct
distribution, but it may be used to locate a region of high probability, after which the simulation is
continued using T = 1 to allow samples from the correct distribution to be obtained. The method
can also be used as an optimization technique in which T is gradually reduced to zero, so that the
samples converge onto a (local) minimum of the function E(x).

A variant of the simulated annealing approach involves decomposing the energy function E(x)

into the sum of a term E

0

(x) which has nice properties (for example it may be separable or it may
be a convex function) and a term E

1

(x) which represents the difference between E
0

(x) and the true
energy E(x). Samples are then drawn from the distribution

p(x) =

1

Z(T )

exp(�E

0

(x) +E

1

(x)=T ) (1.82)

with initially T � 1, and again T is gradually reduced to 1. For example E
0

(x) may correspond to
the prior, and E

1

(x) may represent the contribution from the likelihood function.

An important consideration in the use of simulated annealing is the choice of annealing sched-
ule for the reduction in T . In the simplest case this is pre-defined, for example a geometric reduc-
tion in T obtained by multiplying T by a fixed constant 0 < � < 1 after each iteration, although in
more sophisticated approaches the reduction in T may be governed by the observed sequence of
sampled values.

Although simulated annealing does not quite sample from the correct distribution, the related
technique of simulated tempering avoids this problem. It involves the introduction of a fixed set
of temperature values of which T = 1 is the lowest. The state of the temperature becomes a
stochastic variable and is itself sampled as part of the Markov chain, and a modification to the
energy function encourages the system to spend roughly equal times at the different temperatures.
At higher temperature values the system can move more freely from one region of state space to
another, whereas when the system has temperature T = 1 the state space samples are drawn from
the required distribution.
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1.8 Historical Remarks and Bibliography

Markov chain Monte Carlo methods have their origins in physics, and it was only towards the
end of the 1980s that they started to have significant impact in the field of statistics. The first
published paper to describe the Monte Carlo methods was ?), and the Metropolis algorithm was
introduced by ?). An important contribution by ?) showed that the Metropolis algorithm, and
its generalization the Metropolis-Hastings algorithm, are members of a large family of possible
algorithms.

The logic sampling method for directed graphs with evidence was introduced by ?). Likelihood
weighted sampling was proposed by ?), and also by ?) who also proposed the ‘self-importance’
sampling and ‘Markov blanket scoring’ extensions.

Adaptive rejection sampling was developed by ?) and extended to the derivative-free case
by ?). The adaptive rejection Metropolis sampling technique for non log-concave distributions is
described in ?).

The particle filtering, or sequential Monte Carlo, approach has appeared in the literature under
various names including the bootstrap filter (?), survival of the fittest (?) and condensation (?). It has
been applied to Markov decision processes by ?).

Gibbs sampling was popularized by the work of ?), and the BUGS software, which builds heav-
ily on the Gibbs sampling framework, is described in ?). The technique of blocking Gibbs was
proposed by ?).

Slice sampling was introduced by ?), who also provides a proof that it samples from the desired
distribution. The hybrid Monte Carlo algorithm was introduced originally in the physics literature
by ?), and later applied to Bayesian inference for neural networks by ?).

Diagnostic tests for convergence of Markov chain Monte Carlo algorithms are summarized in
Chapter 8 of ?).

There are numerous texts dealing with Monte Carlo methods. Those of particular interest from
the statistical inference perspective include ?), ?), ?), ?), ?), ?) and ?). Also there are review articles by
?), ?), ?), ?), ?), ?) and ?) which provide additional information on sampling methods for statistical
inference.

Exercises

1.1 (?) Show that the finite sample estimator (??) has mean hfi and variance �

2

=L where �

2 is
defined by (??).

1.2 (?) Let x be a d-dimensional random variable having a Gaussian distribution with zero mean
and unit covariance matrix, and suppose that the positive definite symmetric matrix � has
the Cholesky decomposition �LL

T. Show that the variable y = � + Lx has a Gaussian
distribution with mean � and covariance �. This provides a technique for generating samples
from a general multivariate Gaussian using samples from a univariate Gaussian having zero
mean and unit variance.

1.3 (?) Suppose that z has a uniform distribution over the interval [0; 1℄. Show that the variable
x = b tan z + 
 has a Cauchy distribution given by (??).

1.4 (? ?) Determine expressions for the coefficients k
i

in the envelope distribution (??) for adaptive
rejection sampling using the properties of continuity and normalization. Hence determine a
scheme for sampling from this distribution.

1.5 (?) Use the sum and product rules of probability to verify directly the conditional indepen-
dence properties p(x

t+1

jx

t

; y

(t)

) = p(x

t+1

jx

t

) and p(y

t

jx

t

; y

(t�1)

) = p(y

t

jx

t

) for the graph in
Figure ??.
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1.6 (?) Show that the simple random walk over the integers defined by (??) has the property that
hx

2

n

i = hx

2

n�1

i+ 1=2 and hence by induction that hx2
n

i = n=2.

1.7 (? ?) Show that the Gibbs sampling algorithm, discussed in Section ??, satisfies detailed balance
as defined by (??).

1.8 (? ?) Consider the simple 3-node graph shown in Figure ?? in which the observed node x is
given by a Gaussian distribution N (xj�; �) with mean � and precision � . Suppose that the

x

tm

Figure 1.19: A graph involving an observed Gaussian variable x with prior distributions over its
mean � and precision � .

marginal distributions over the mean and precision are given byN (�j�

0

; s

0

) and Gam(� ja; b),
where Gam(�ja; b) denotes a Gamma distribution. Write down expressions for the conditional
distributions p(�jx; �) and p(� jx; �) which would be required in order to apply Gibbs sam-
pling from the posterior distribution p(�; � jx).

1.9 (?) Verify that the over relaxation update (??), in which x

i

has mean �

i

and variance �
i

, and
where � has zero mean and unit variance, gives a value x0

i

with mean �

i

and variance �2
i

.

.1 Ergodicity of Markov Chains

In this appendix we show that a homogeneous Markov chain will be ergodic, subject only to a
weak restriction on the invariant distribution and the transition probabilities.

Theorem .1 Consider a transition probability T (x0; x) defining the relation between the marginal probabil-
ities of x at subsequent steps of a Markov chain

p

m+1

(x) =

X

x

0

T (x

0

; x)p

m

(x

0

): (83)

together with a particular distribution p�(x) which is an invariant distribution of T (x0; x) and which is such
that

� = min

x

min

fx

0

:p

�

(x

0

>0)g

T (x; x

0

)

p

�

(x)

> 0: (84)

The corresponding Markov chain will be ergodic, so that for any choice of initial distribution p

0

(x)

lim

m!1

p

m

(x) = p

�

(x): (85)
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Proof: The proof uses induction to show that the distribution at step m can be written as a
mixture of the invariant distribution and some other distribution. At each step the proportion
of the invariant component cannot decrease, while the condition (??) ensures that the remaining
component will generate some contribution to the invariant component.

We suppose that at step m the following holds

p

m

(x) = [1� (1� �)

m

℄p

�

(x) + (1� �)

m

r

m

(x) (86)

where r
m

(x) is an arbitrary non-negative and normalized function, which can represents a valid
probability distribution. Since we cannot have p�(xzprime) < T (x

0

; x) for all x0, we must have � <
1, and so p

m

(x) is a convex combination of two distributions and hence is also a valid probability
distribution. The result (??) clearly holds for m = 0, with r

0

(x) = p

0

(x). We now show that the
equivalent result must hold at step m+ 1. Using (??) we have

p

m+1

(x) =

X

x

0

p

m

(x

0

)T (x

0

; x)

= [1� (1� �)

m

℄

X

x

0

p

�

(x

0

)T (x

0

; x) + (1� �)

m

X

x

0

r

m

(x

0

)T (x

0

; x)

= [1� (1� �)

m

℄p

�

(x) + (1� �)

m

X

x

0

r

m

(x

0

) fT (x

0

; x) � �p

�

(x) + �p

�

(x)g

= [1� (1� �)

m+1

℄p

�

(x) + (1� �)

m+1

X

x

0

r

m

(x

0

)

T (x

0

; x)� �p

�

(x)

1� �

= [1� (1� �)

m+1

℄p

�

(x) + (1� �)

m+1

r

m+1

(x) (87)

where we have defined

r

m+1

(x) =

X

x

0

r

m

(x

0

)

T (x

0

; x)� �p

�

(x)

1� �

: (88)

Clearly
P

x

r

m+1

(x) = 1, and from (??) we have r
m+1

(x) � 0, so that r
m+1

(x) therefore represents
a probability distribution. �

This theorem easily generalizes to Markov chains over continuous state spaces.


