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ABSTRACT. Estimation from sample data and density approximation with phase-type distribu- 
tions are considered. Maximum likelihood estimation via the EM algorithm is discussed and 
performed for some data sets. An extended EM algorithm is used to minimize the information 
divergence (maximize the relative entropy) in the density approximation case. Fits to Weibull, 
log normal, and Erlang distributions are used as illustrations of the latter. 
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1. Introduction 

Phase-type distributions are defined as distributions of absorption times Y in Markov 
processes with p < oo transient states (the phases) and one absorbing state 0. The simplest 
examples are mixtures and convolutions of exponential distributions (in particular Erlang 
distributions, defined as gamma distributions with integer parameter). More generally, the 
class comprises all series/parallel arrangements of exponential distributions, possibly with 
feedback. 

There are several motivations for using phase-type distributions as statistical models. The 
most established ones come from their role as the computational vehicle of much of applied 
probability: very often, problems which have an explicit solution assuming exponential 
distributions are algorithmically tractable when one replaces the exponential distribution 
with a phase-type distribution. For typical examples, see e.g. Neuts (1981), Sengupta (1989), 
Asmussen (1992) in queueing, Asmussen & Rolski (1991) in insurance risk theory, Kao 
(1988), Lipsky (1992), Asmussen & Bladt (1996) in renewal theory, and Bobbio et al. (1980), 
Jonsson et al. (1994) in reliability. Assume e.g. that for design purposes the engineer needs 
the mean waiting time in a data queue. He would then fit a phase-type distribution to the 
observed service times and compute the exact mean waiting time in the queue with this fitted 
service time distribution. In such situations, the phase-type model is crucial because other- 
wise the mean waiting time is not available in closed form. Furthermore, one may argue that 
there is no essential loss in generality in the phase-type setup: the class of phase-type 
distributions (with p taking any finite value) is dense and hence any distribution on [0, oo) 
can, at least in principle, be approximated arbitrarily close by a phase-type distribution. 
Some main studies of the estimation problem originating from this framework are Bux & 
Herzog (1977), Johnsson & Taaffe (1989, 1990a, b), Bobbio & Cumani (1990) and Bobbio & 
Telek (1994). 

The relevance of phase-type distributions can also be argued in more traditional statistical 
settings. Due to the denseness, one can view phase-type modelling as a semi-parametric density 
estimation procedure with a built-in smoothing (the degree of smoothness being determined 
by the value of p). In such applications, the phases have no physical interpretation and the 
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phase-type modelling is purely descriptive. However, in other areas such as demography (see 
Hoem, 1969), drug kinetics, epidemiology, etc, the probabilistic interpretation fits in nicely 
with standard Markovian modelling. Explicit use of phase-type ideas to generalize exponen- 
tial times to more arbitrary residence times can be found in Faddy (1990, 1993, 1994), where 
maximum likelihood estimation for some substructures of phase-type distributions, permit- 
ting a restricted form of feedback, is also investigated. Another recent contribution to this 
area is found in Aalen (1993, 1995), where acyclic phase-type models in survival analysis are 
discussed and several examples of phase-type modelling in survival analysis are given. 

The literature on estimation of (and approximation by) general phase-type distributions is 
meagre and not always satisfying from a statistical point of view. Up to now estimation in 
connection with subclasses have mainly been considered. In Bux & Herzog (1977) minimiza- 
tion of the maximal absolute value of the difference between the empirical distribution and 
Coxian distributions, in a fixed finite set of points, is used as a fitting criteria. (For a 
definition of Coxian distributions see section 2). Mixtures of Erlang distributions are fitted by 
a variety of methods including moment matching and non-linear programming which is used 
in Johnson & Taaffe (1989, 1990a, b), and Johnson (1990). Such restrictions on the class of 
phase-type distributions are, however, not natural in all applications; a particular drawback 
is that assuming a special structure like a mixture of Erlang distributions, leads to large 
values of p and thereby a high complexity in the applied probability algorithms. Numerical 
maximum likelihood methods for Coxian distributions, using non-linear constrained opti- 
mization, have been implemented recently in Bobbio & Cumani (1990), and Bobbio & Telek 
(1994); this approach appears in many ways to be the most satisfying developed so far, the 
main restriction being that only Coxian distributions are allowed. 

In this paper (which is based on ideas first sketched in Asmussen & Nerman (1991)), we 
present a general statistical approach to estimation theory for phase-type distributions. The 
idea is quite straightforward: the class of phase-type distributions may for a fixed p be viewed 
as a multi-parameter exponential family, provided the whole of the underlying absorbing 
Markov process is observed. Since the data in practice consist of i.i.d. replications of the 
absorption times Y1, . . ., Yn of Y, we are in the setting of incomplete observations and may 
try to implement the EM algorithm. 

The idea to use the EM algorithm in connection with finite state space Markov chains is 
certainly not new. In fact, one of the roots of the algorithm, Baum et al. (1970), is from 
Markov chain theory. Another variant of the EM algorithm which is of particular relevance 
for us, was developed in Sundberg (1974, 1976), in connection with partial observations of 
samples from the exponential family. (Inspiration to the development also came from 
missing observation problems, Orchard & Woodbury (1972), and estimation of mixture 
distributions, Redner & Walker (1984).) A classical reference on the EM algorithm in general 
is Dempster et al. (1977) and the discussion contributions there. Convergence criteria and 
problems with convergence to saddle points and local maxima are discussed in Wu (1983), 
where some mistakes in Dempster et al. (1977) are also pointed out. 

Our paper is organized as follows: in section 2, we give a short introduction to phase-type 
distributions following such standard sources as Neuts (1981). In section 3, we describe 
the EM algorithm in detail, with some of the calculations for the E-step being deferred to 
the Appendix. For the approximation of a theoretical density by a phase-type density 
we also consider the infinite sample analogue of maximum likelihood estimation: minimiza- 
tion of the information divergence (relative entropy or Kullback-Leibler information). 
Computationally, this turns out to be almost equivalent to the EM algorithm for a sample. 
Section 4 contains descriptions of the most important substructures of phase-type dis- 
tributions. In section 5, a number of examples performed with the EMPHT-program (an 
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implementation of the proposed algorithm which is described in detail in Haggstrom et al. 
(1992)) are shown. In the Appendix we derive some key formulas used in the E-step of the 
EM algorithm, and we also discuss the theoretical basis of the information divergence variant 
of the EM algorithm in general. 

We conclude this section by pointing out some further related work and references: Lang 
& Arthur (1994) present a careful experimental evaluation of various methods and packages 
for fitting phase-type distributions, including the approach of the present paper as imple- 
mented in Haggstrom et al. (1992) (their main criticism concerns speed but as remarked 
later, we have not yet implemented the various possibilities for speeding up the algorithm). 
The algorithm presented in this paper has been extended to handle right-censored observa- 
tions and interval-censored observations, which is presented in a companion paper (Olsson, 
1996). A numerical algorithm for maximum likelihood estimation of so-called generalized 
mixed exponential distributions (permitting negative mixing weights) is treated in Harris & 
Sykes (1987). This class is, just like phase-type distributions, a subclass of the so-called 
generalized Coxian distributions: all distributions on [0, oo) which have rational Laplace 
transforms (Cox, 1953). Some of its distributions are not representable as phase-type 
distributions and, vice versa, some phase-type distributions with cyclic Markov representa- 
tion are not general mixed exponential distributions. See also Ruhe (1980) for another 
contribution to this problem area, and for the use of the EM algorithm in mixing models in 
general see Redner & Walker (1984) and its references. In the series of papers collected in 
Ryden (1993), estimation theory for Markov modulated point processes is considered, a 
problem which in applied probability can be seen as the natural next step after phase-type 
fitting of one-dimensional distributions. One of the papers, in fact, also implements the EM 
algorithm. The situation in Ryden (1993) falls within the framework of hidden Markov 
models which has been studied in general in Leroux (1992). It should be noted, however, that 
in our observation scheme there are no dependencies of the type occurring in hidden Markov 
models and which are the main problem there. 

2. Phase-type distributions 

Consider a Markov process Ju on a finite state space {0, 1, . . ., p }, where 0 is absorbing and 
the other states are transient. The absorbing state makes it possible to block partition the 
infinitesimal generator Q as 

Q 0 0, . . .,0 

where ti (the ith element of t, the exit vector) is the conditional intensity of absorption in 0 
when Ju is in state i. The (p x p)-dimensional matrix T (called the phase-type generator) is 
always non-singular and thus invertible. Further, it is clear that t =-Te, where 
e = (1, . . ., 1)', since each row in Q sums to zero. 

A random variable Y, distributed as the absorption time inf {v > 0: Jv = 0} corresponding 
to an initial distribution ir (defined as a row vector), is said to be phase-type distributed 
(i, T). The statistical parameters are thus X and T. We treat p as fixed and do not discuss the 
choice. of p in this paper (although one could use, for example, Akaike's information 
criterion AIC, to compare different choices of p). 

The transition matrices 

0' Q"v n 

Pv =exp (Qv} = Z 
n =S 0n J! 
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of the Markov process can also be block partitioned, 

pv =r 0, . .., 
= 

(e-exp {Tv}e exp Tv} 

which immediately gives us an expression for the distribution function F(y) 

F(y) = 1 -xt exp {Ty}e. 

Some further basic analytical characteristics of a phase-type distribution are: 

(i) the density f(y) = i exp {Ty }t 
(ii) the failure rate r(y) = a exp {Ty}t/l exp {Ty)e 

(iii) the Laplace transform Jf exp {-sy}F(dy) = i(sI-T) t 
(iv) the n th moment mn = f yn F(dy) = (- l) nn!T-ne. 

We call the phase-type distribution Coxian if 

mI = 1, -ti, i = ti i1 + ti for i = 1, . . .,p-1, and -tp,p = tp. 

In the rest of this section we discuss the parameterization problem, which is important 
from a statistical point of view and certainly is a non-trivial problem. The parameterization 
with a and T is by no means unique. First, there is a trivial aliasing due to the arbitrary 
ordering of the states; simultaneous permutations of rows and columns in T and of the 
elements in X (with the same permutation) result in the same phase-type distribution. Second, 
there is a more subtle unidentifiability problem present; if e.g. t = - Te = Ae for A > 0, then 
the corresponding phase-type distribution is exponentially distributed with parameter A, 
irrespective of the choice of i. 

A remarkable result from Cumani (1982) and Dehon & Latouche (1982) (see also 
O Cinneide, 1987), is that any phase-type distribution having an acyclic Markov chain 
representation can be uniquely represented by a Coxian distribution with stochastically 
increasing states, i.e. -tl >- t2 2 ... - tp p. Such a process starts in state 1, and can 
only jump from state i to i + 1 or to the absorption state 0. Thus, the true parameter 
dimension for acyclic phase type distributions of order p is 2p - 1 (note that start in 0 is not 
allowed). 

In fact, also the full class of phase-type distributions of order p has a parametrization in 

2p- 1 dimensions: it follows from the Cayley-Hamilton theorem that there is at least one 
sequence AO, A1. ..., AP 1 such that 

p-1 

T-e= E AiT-'e. 
i=O 

If we fix such a sequence, then these coefficients together with the first p - 1 moments 
determine all moments recursively. This is seen by multiplying the relation above by T -n 

from the left: 

(_l)n+Pml+'.P~= E Ai'( I n=0,1,2,. 
(n +p)! i=O (n +i)! 

where mo = 1. Now, since the Laplace transform near zero is determined by all the moments, 
it follows that A0, . . ., AP -, ml , . ., mp ,1 determine the distribution. 

The method we will use to estimate (or approximate by) phase-type distributions depends 
on the parameters of the Markov process. However, since we are primarily interested in 
estimable quantities as the distribution, density or failure rate function, the drawback of 
using over-parameterization is not that great. 
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3. The EM algorithm for phase-type distributions 

The EM (expectation-maximization) algorithm is an iterative method for maximum likeli- 
hood estimation (Dempster et al., 1977; Wu, 1983). Its area of applications concerns 
incomplete data, i.e. data which can be thought of as partial observations of a larger 
experiment, where a more specified course of events can be observed than in the experiment 
actually performed. 

Suppose that Y = u(X), with density g,, is observed (for a many to one mapping u) and 
think of X, with densityf7, as the result of the larger unobserved experiment. Then step n + 1 
in the EM algorithm consists of finding a value y,, + which maximizes 

y -* FEY,[logfy(X) I u(X) = y] 

where y is the observed data and yn the current estimate after n steps of the algorithm; the 
evaluation of the conditional expectation is the E-step, and the maximization is the M-step. 

Denote by ky the conditional density of X given u(X). Using the logarithm of the relation 

fy(x) = gy(u(x))ky(x I u(x)) 

and Jensen's inequality, it is straightforward to see that the likelihood increases in each step: 

91, +I1(Y) >' gYn (y) 

Thus, if y,, converges we can hope for a convergence to the maximum likelihood estimate y. 
However, convergence might be hard to prove, and worse, convergence may take place to 
local maxima or even saddle points (see Wu, 1983). 

In our case when X belongs to a multi-dimensional exponential family with density 

fy(x) = exp {O(y)'S(x) + d(O(y)) }, 

(cf. (1) in the next section), the E-step consists of calculating 

EyI[S(X) I u(X) = y]. 

In the M-step, the likelihood f is maximized by using this expectation as the observed value 
of S(X). 

3.1. Construction of the complete sample 

The connection between Markov processes and phase-type distributions makes it natural to 
consider the incomplete data approach to find a way of calculating maximum likelihood 
estimates. An observation y of the time to absorption can be regarded as an incomplete 
observation of the Markov process Ju. It is incomplete in the sense that it only tells us when 
the process hits 0, and does not provide any information about how it got there, where it 
started, which of the states it visited and for how long. 

Observing the whole Markov process is equivalent to observing the embedded Markov 
chain Io, II, . .., IM- I (IM = 0) and the sojourn times So, S1, . . ., SM I (SM = cO), where M 
is the number of jumps until J, hits the absorbing state 0. 

Thus, given an observation y of the phase-type distribution, a complete observation of the 
process Ju on the interval (0, y] can be represented by x = (io, . . ., im I, I . ., sm - I ), where 
the sojourn times must satisfy y = s0 + + sm . 

Let 

PJk = P(In + I = k In I) tilA j=l,..., pandk=O, 

? Board of the Foundation of the Scandinavian Journal of Statistics 1996. 
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where Ai is the intensity of the holding time in state i, that is )i =-tij, and ti represents the 
ith element of the exit vector t. Then the density of the observation x is 

f(x; i,T) = 7ir i. exp {-Ai0so 0}pioi I * *im-, exp {-Rim_ Sm-I}Pim-1O 

= io exp { -i os?tioi l exp { Rim-1sm _Itim-1- 

Now, suppose that we have n independent replications of the process, JO', J[] and let 

JIV., It [v] 1 denote the embedded Markov chain and SEv., Stvl [vl the holding times 
for the vth process. Hence, a sample of size n is represented by 

x = (io ,' . . ., ill1] _ 1 XIoo. ll _l ...,io 
n 

. , im[n] _ 

n 
I O S*** [n]-I) 

This is the complete data-set which we will use in the EM algorithm to try to find the 
maximum likelihood estimate of (x, T) from the observed sample 

Y=(Yi.Y) =(5] + * + S]1 . ..Sn0+ + S [n]-1)- 

The density of the complete sample x can be written in the form 

p p p p 

f(x; x , T) = Hr H exp {ti Zi} I HI tii (1) 
i=1 I ~~~~i=I j.=0 

J#A i 

where 

p 

Bi= I I=I} = the number of Markov processes starting in state i, i = 1. p. 
v= I 

n m(v)_ - 
z = Z H li} Stv] = the total time spent in state i, i = 1,. p. 

v= I k=O 

n mMv]-I 

Nij 
= E E lI[v = Sv] 

v=1 k=O 

= the total number of jumps from state i to state j, for i :#j, i = 1, ... 9p, 

andj=0, 1,...,p. 

The density f(x; x, T) is a member of a curved multi-parameter exponential family with 
sufficient statistic 

S=((Bi)i= '...,P, (Zi)i= ,...,p, (Nij)i= PI...,P,j=O,. ,P,iOj)- 

It follows either by general theory for exponential families or by explicit calculations (using 
- (ti + E>+ i tij) = tij) that the maximum likelihood estimates, based on the fictitious sample 
x, are 

A -U t. ~ ~ ~ ~ ~~ i,=,..,.(2) 
Rin-n tii I= z tii ( + E ig = I, P. 

zi~~~~~~~# 
See Albert (1961) or Basawa & Rao (1980) for a detailed account of how to derive the 

maximum likelihood estimate of the intensity matrix of a finite state Markov process. 

3.2. The E- and M-steps 

The first step of each iteration, the E-step, consists of calculating the conditional expectation 
of the sufficient statistic S, given the observed sample y and the current estimates of (n, T), 
say (n, T)(k). Then in the M-step the likelihood (1) is maximized, using the conditional 

?) Board of the Foundation of the Scandinavian Journal of Statistics 1996. 



Scand J Statist 23 Phase-type fitting via the EM algorithm 425 

expectation of S as its observed value. Hence, we get the new estimates of (i, T) simply by 
replacing the statistics in (2) with their conditional expectations evaluated in the E-step. 

Note that the single statistics in S are all sums over the sample, which means that 
conditioning on the sample y reduces to conditioning on one observation in each summand. 
Letting BOv], Z(v], and N[J be the contributions to S from the vth observed process, then the 
k + 1st iteration of the algorithm becomes 

E-step: Calculate 

n 
B(k+l) = E (n T)(k)[BlV] yv] for i = 1, . . .p 

v= 1 

n 
Z(k + 1) E(n T)(k)[Z5 ] yv for i = 1, . . p 

v= I 

n 

_(+) - Z E(n,T)(k)[N[J jyv] for] #i, = 1,.. .,p, andj =0, 1...p. 
v= I 

M-step: The new estimates are given by 

B(k+ l) N( + 1) N(k+ l) p 
(k + 1) I 

1Z(k+1) z(+1 + 
z (k + 1 ) t ,t (k + 1 ) = J t (k O t( + I)=_t ( + I ) + E t (k + I ) 

The difficult part of the EM algorithm is in our case the E-step, which is computationally 
heavy. In the appendix we show that 

E n-b (yv ~~T) 
E( |Y=YV] = 7rb(yv T) 

E(,,,T)[Z[V I Y=YV] - cE(YV; I j ir, T) 
(y;i 7r, T) 

E(, T,[N[V]I Y=y] = i 7rb(yv I T) 

E(ir T)[N[O I Y=V = yv tjc F(yv; 17, T) 

where ei is the ith unit vector and a(y I c, T), b(y | T), c(y; 1 ir, T), . c(y; p ir, T) are 
p-dimensional vector functions defined by 

a(y I n, T) =ir exp {Ty} 

b(y I T) = exp {Ty}t 

rY C(y; i I1C, T) =j7rexp{Tu}eiexp{T(y-u)}tdu i=1,...,p. 

For fixed ar and T, these functions satisfy a p(p + 2)-dimensional linear system of 
homogeneous differential equations. Let ai(y I ir, T) be the ith element of the vector function 
a(y 7r, T), bi(y 17r, T) the ith element of the vector function b(y I|, T) and so on, then the 
system can be written as 

a'(y | , T) = a(Y I a, T)T 

b'(y |T) = Tb(y I T) 

c'(y; r f F n T) = Tc(y;ai|na , T)J+oai(yu,T)t if =S,t.c ..,p. 
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Combining these equations with the initial conditions a(O I r, T) = i, b(O IT) = t, and 
c(O; i I x, T) = 0 for i = 1, . . ., p, we can solve the system numerically with high precision, 
using some standard method, see e.g. Moler & Van Loan (1978). In the EMPHT-program, 
the Runge-Kutta method of fourth order is implemented for this purpose. 

An interesting property of the algorithm presented above is that the mean of the fitted 
phase-type distribution is the same as the mean of the sample (or the theoretical mean if the 
fit is to another distribution). This is not a general feature of the EM algorithm, but is true 
in our case because the observations are linear functions of the canonical sufficient statistics 
of the underlying exponential family, y, = If= I ZN. In every iteration of the E- and M-step, 
the new estimates of (7r, T) are the solution of 

n p n p 

E(n T) (k) Zv Ii []Y= E( T) (k +1) EEZ [v] 
v=l i=l I= i=l 

The left side above equals 1= I yv, and the right side equals n E(, T) (k +1) [Y], and the result 
follows. 

3.3. Fitting continuous distributions 

The EM algorithm can, after minor adjustments, be used to fit a phase-type distribution to 
a theoretically given distribution. We let fn, T) be a density of a phase-type distribution and 
h the density of the given distribution. By fitting f., T) to h we mean minimizing the 
information divergence (relative entropy or Kullback-Leibler information), which is equiva- 
lent to maximizing f log (fA, T)(y))h(y) dy. This is a natural analogue to maximizing the 
log-likelihood function when we fit fn, T) to a sample y, interpreting 1/n En= as an integral 
w.r.t. the empirical distribution. Thus, we can also generate the EM algorithm. Details and 
further theoretical motivations are given in the Appendix for a general class of densities g. 

When we fit An, T) to a density h, the E-step consists of calculating 

B(k + 1 ) = J E(n, T) (k [Bi I y]h(y) dy for i = 1, . . ., p 
so 

and corresponding formulas for z(k+l) and N$( + 1). The new estimates are calculated in the 
M-step: 

-(k + 1) y(+ I) P 
7(k + 1) = (k + 1) t(k+ 1) = N(k+1 t(k + I) - N%c+I) k + tk1 + V + ) 

+0 
( 
ii 1\ 1 Z 

j#i 

In the EMPHT-program the integrals in the E-step are approximated by a weighted sum 
over a finite grid: f . .. h(y) dy = En= I ... wvyv Hence, the difference between fitting f to a 

sample and to a distribution is computationally very small. In fact, by assigning weights 

WV = 1 to each observation, fitting to a sample becomes a special case of fitting to a 
distribution. 

4. Special structures 

One of the advantages of using the EM algorithm to estimate (i, T) is that it preserves the 
structures of zeros in X and T. That is, once an element has been estimated to be zero, it will 
remain zero thereafter. This is easily seen in the formulas (3) of the conditional expectations. 
Probabilistically it means that the conditional probability of an impossible event remains 

equal to zero. 
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Hence, if one wants a phase-type fit within a special class having some elements fixed to 
zero, one needs only to start the EM algorithm with (ir, T) 0" in that class. The most common 
special classes, or substructures, are 

(i) hyper exponential, i.e. a (finite) mixture of exponentials: the Markov process may 
start in any state and is absorbed without visiting any other state, i.e. ir is arbitrary, 
while T is diagonal; 

(ii) sum of exponentials (general Erlang): starts in state one, jumps only from state i to 
i + 1, and is absorbed from state p; 

(iii) Coxian: same as sum of exponentials except that absorption is allowed from any 
state. 

In the EMPHT-program the user can choose among five different pre-specified structures 
(the three described above included). Also, it is possible to specify any other structure by 
assigning the initial values of a and T, instead of using a random initialization. 

The reasons for paying particular attention to such special structures is in part historical. 
One may note, though, that in applied probability algorithms for queueing or renewal theory, 
the complexity is determined by the number p of phases alone, and there is no simplification 
by assuming, say, a Coxian structure. In most of our experimental work, we found a Coxian 
distribution to provide almost as good a fit as a general phase-type distribution with the same 
p; for one exception, see the Erlang distribution with feedback in section 5.3. One advantage 
of special structure is that the fitting algorithm is faster for a given p, and for a given amount 
of allocated computer time one can thereby work with a larger number of phases and possibly 
obtain a better fit (for an example, see the geyser data in section 5.5). 

As was pointed out in section 1, Cumani (1982) and Dehon & Latouche (1982) have 
shown that all phase-type distributions corresponding to acyclic distributions (that is a 
distribution whose generator is upper triangular), coincide with the Coxian distributions. 
Still, there may be reasons to consider general acyclic distributions when fitting a data-set 
using the EM algorithm, since the complete data models will not be the same in such a 
distribution as in a Coxian. Therefore the EM-steps will not develop in the same way, and 
the algorithm may end up in different distributions (if there exist local maxima or saddle 
points of the likelihood) depending on from which structure it was started. 

Another possibility not exploited in this paper, is to have restrictions on the relation 
between elements within ar and T. For example, one can assume that all tij are equal in the 
sum of the exponential structure to derive an Erlang distribution. However, such restrictions 
require a modification of the M-step, which is not yet implemented in our computer 
programs. 

5. Examples 

To get some idea of how the algorithm works in our case, we have performed a sequence of 
illustrative examples, in which we try to illustrate graphically both the dynamics of the 
algorithm and how the resulting approximation works out. We start the series of examples 
with a sequence of fits to theoretical densities. A somewhat haphazard collection of 
phase-type orders have been tried on three different theoretical distributions: Weibull, log 
normal and an Erlang distribution with feedback. The performance of the algorithm is 
illustrated with plots of the densities and failure rates of the theoretical distributions together 
with their EM-approximations after various numbers of iterations. Some of the theoretical 
densities are chosen from a set of standards worked out by the participants in a workshop 
on phase-type fitting at Aalborg University in 1991 and used also in Bobbio & Telek (1994). 
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Table 1. Time (in seconds) needed to perform 10 iterations 

Structure p Time Structure p Time 

General PH 2 0.3 Coxian 5 4 
5 8 10 40 

10 170 30 5100 

The time it takes to perform one iteration of the EM algorithm when using the 
EMPHT-program depends on several factors; the main ones being the value of p, which 
structure is fitted, the size of the sample, and the step-length used in the Runge-Kutta 
function (which can be chosen by the user). In Table 1 we give some examples of the 
CPU-time (40 MHz Viking SPARC-processor) in seconds, needed to perform 10 iterations of 
the EM algorithm for fitting phase-type distributions of some different orders and structures. 
All these distributions have been fitted to the same sample of 100 observations, and the 

step-length in the Runge-Kutta function (in the EMPHT-program) has been set to its 
default value throughout. 

The number of iterations needed to fit a phase-type distribution reasonably well to a 
sample or to another distribution, depend mostly on how many parameters there are to be 
estimated; the larger the order of the distribution is, the more iterations are needed, and a 
Coxian structure needs fewer iterations than a general phase-type structure of the same 
order. In the examples to follow, we have performed 1000-10 000 iterations to find 
reasonable fits. We have not used any strict criteria for deciding how many iterations should 
be done in the different examples, but stopped the fitting when the changes in the successive 
parameter estimates have become negligible. 

5.1. Fits to a Weibull distribution 

The chosen Weibull density has scale parameter equal to 1 and index equal to 1.5, i.e. 

f(x) = 1.5x 05 exp {-x`5}. 

The first pair of figures show the successive fits of a phase-type distribution of order 2. In 
Fig. 2 we show the fits of phase-type distribution of order 6. We also illustrate (in Fig. 3) 
how the likelihood of the successive estimates grows toward the maximum likelihood value. 
The "likelihood" should be interpreted as an approximation of the integral of the logarithm 
of the fitted phase-type density times the theoretical density in question, (the last part of the 
information divergence, see section 6.2). By "maximum likelihood value" we mean this 

likelihood based on the last iteration of the EM algorithm. 

5.2. Fits to two log normal distributions 

We have used two different log normal distributions; the first with parameters p = -0.32, 
a 2= 0.8, the second with p = -1.62, U2 = 1.8. Both distributions have mean equal to 1, but 
the second has a standard deviation which is about 5 times the standard deviation of the first 
distribution. The second log normal distribution was very well approximated by a phase-type 
distribution of order 2, while a phase-type distribution of order 4 was required to get a 
reasonable fit of the first log normal distribution (see Fig. 4). 
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WEIBULL (1,1.5) 

0.8 I \ 

e 0.6. 

0 I I . , 
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(a) 

WEIBULL (1,1.5) 

2.50 , , 

/~~~~ 

0.4 - 

0 0.5 1 1.5 2 2.5 3 3.5 4 

(b) 

Fig. 1. Approximations of Weibull (1, 1.5). The density (a) and the failure rate (b) of a phase-type fit 
of order p = 2 after 1 ---, 25 - -, and 1000 - iterations. 
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WEIBULL (1,1.5) 

0.9 \ 

0 0.5 1 1.5 2 215 3 315 4 4.5 

Fig. 2. Approximation of Weibull (1, 1.5). A phase-type fit of order p = 6 after 1 ---, 25 -. -, and 10 000 
iterations. 
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Fig. 3. Approximation of Weibull (1, 1.5). The dotted line is the value of the likelihood function of the phase-type 
fit of order 2, during the first 50 iterations. The daished line shows the value of the likelihood function after 1000 
iterations. 
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LOG NORMAL (-0.32,0.8) 

0.9- 

0.8 - 

0.7 - 

~0.6r- :/ 

0 0.5 1 1.5 2 2.5 3 3.5 4 

Fig. 4. Log normal (-0.32, 0.8) approximated by phase-type distributions of order p = 2 - --, and p = 4 
.Both approximations are based on 2000 iterations. 

5.3. Fits to an Erlang distribution with feedback 

The chosen Erlang distribution with feedback has an underlying Markov process starting in 
state one, and from which it either jumps to the absorption state (with probability 0.4) or to 
state number two. From state two it can only jump to state three, thereafter to state four and 
so on. From the last state (number 15) it jumps to state one which gives it a so-called 
feedback structure. 

This distribution is chosen to provide an example where it seems important to have a 
general phase-type structure rather than a Coxian one (it is also interesting because it 
exhibits wave phenomena). We have tried to approximate with both a general phase-type 
structure and an upper triangular structure. For lower order (p = 5 and 10), these fits are 
very poor. Therefore we tried to recover the distribution from a general phase-type 
distribution of the same order, and for comparison we also fitted an upper triangular 
phase-type structure as well as a Coxian structure of order 15. The Coxian fit was not started 
randomly, but initiated with parameters of decreasing values in order to try to utilize the 
result in Cumani (1982) and Dehon & Latouche (1982), (see section 2). Figure 5 shows 
clearly that the general phase-type structure succeeds much better than the upper triangular 
and Coxian structures to approximate this special distribution. 

The reason why the general phase-type fit does not completely recover the given distribu- 
tion is probably due to the fact that 10 000 iterations are not sufficient when p is as high as 
15. However, the runs in large p-dimensions are very time-consuming. It might be possible 
to speed up the algorithm either by trying other solution methods for the differential 
equations in the EM step, or by using acceleration methods for the EM algorithm (see Louis, 
1982; Meilijson, 1989; Jamshidian & Jennrich, 1993). We have made a first attempt to 
implement the method in Meilijson (1989), but so far it has not worked out well. 
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an upper triangular structure - --, and a Coxian structure .All fits are of order p = 15, and are based on IO 000 

,,, 1. 
w 

iterations. 

5.4. Fits to a uniform distribution 

The rate of convergence of the EM algorithm depends on the amount of missing informa- 
tion: the higher the order p of the phase-type distribution is, the slower the convergence rate 
becomes. This might be one of the reasons why we do not recover the theoretical density 
perfectly in the case of an Erlang distribution with feedback (see Fig. 5). Another might be 
that we get stuck in solutions to the likelihood equation which are local maxima or saddle 
points. To illustrate this phenomenon we show in Fig. 6 two fits, generated from different 
initial values (n, T)"?, of phase-type distribution of order 10 to a uniform distribution on 
[0, 1]. A definite answer to which of the two phenomena is experienced would require a very 
large number of EM steps. However, after a quick look at Fig. 6 it seems that the local 
maxima hypothesis is the most plausible. Also, the difference between the maximum 
likelihood values is very small (log likelihood ratio?-1 1.03). 

S.5. The geyser data-set 

Furthermore, we consider some samples. The first is a notoriously dificult example in density 
estimation which has been used in a number of papers, see Silverman (1986). This sample 
contains 107 observations of the eruption lengths (in minutes) of a famous geyser in 
Yellowstone National Park, USA. We fitted a general phase-type structure of order 15, 
(which after 10 000 iterations ended up in a Coxian structure), and a Coxian structure of 

order 30 (Fig. 7). 
The main difficulty of finding a phase-type fit to this sample is caused by it first having a 

delay (the minimum observation is 1.67) and then starting off steeply. In general, it is hard 
to induce rapid changes of the failure rate, and it requires very high p-dimensions and a lot 
of "fast" states. This is especially so if the changes take place at late time points. Thus, the 

thBatd we gth stuckation soluinst the lcn ikeihnounlod equationic whc1 aeloa9mxmao6sdl 
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UNIFORM 
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Fig. 6. Two phase-type approximations of a uniform distribution, started with different (random) initial 
parameters. Both fits are of order p = 10, and are based on 10 000 iterations. 

geyser data (as well as the uniform density above) show clearly that not all positive 
distributions are easily approximated by phase-type distributions of moderate order. 

5.6. Four samples of the length of telephone calls 

The data file underlying Figs 8-10 was kindly supplied by Professor 0. Kella, Hebrew 
University, Jerusalem, and Professor A. Mandelbaum, Technion, Haifa. In the file, lengths of 
incoming telephone calls to the service centre of one of Israel's major television cable 
companies are recorded and the calls are classified into types 0-1O. We took the four types, 
1, 3, 4, and 7, of incoming calls having the largest number N of observations. The types have 
the following meaning (X is the empirical mean in minutes): 

(i) type 1: "home services", receiving notices from subscribers on problems, and transfer- 
ring the information to technicians, here X = 2.69, N = 2039; 

(ii) type 3: "sales", notices on sales actions, including seeking help on prices, times, 
clarifications with sales people, etc, here X = 2.40, N = 472; 

(iii) type 4: "billings", providing information to customers on payments' procedures, here 
X = 3.18, N = 904; 

(iv) type 7: "general information", including change of address, private calls, here 
X=2.15, N=3189. 

To all four samples we have fitted both a general phase-type structure and a Coxian 
structure. For all samples but one (type 3) it has not been possible to distinguish the fitted 
Coxian density from the fitted general phase-type density in the graphs, (even though the 
estimates of X and T are very different in all fits). The unit of scale on the x-axis in Figs 8-10 
is minutes. 
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GEYSER DATA 
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Fig. 7. Phase-type fits to the geyser data by a general structure of order p 15 --- (based on 10 000 iterations), 
and a Coxian structure of order p = 30... (based on 3000 iterations). In (a) the solid line is the empirical 
distribution function, and in (b) a histogram of the relative frequencies is given as a comparison to the fitted 
densities. 
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TELEPHONE DATA OF TYPE 3 
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Fig. 8. Fits to the telephone data of type 3. Phase-type fits of order p 2 --, p 4 - -, and p = 6 

When fitting phase-type distributions of order 3 and 4 to the telephone data of type 3, we 
discovered that the general phase-type structure seemed to converge to a structure with 
feedback. In these cases the general phase-type approximations gave better fits (according to 
the log likelihood) than the Coxian structure, although the difference is hard to see in plots 
of the densities. For the approximations of order 6, the fits of the general phase-type and the 

TELEPHONE DATA OF TYPE 7 
0.45 
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0.35 - 

0.3 - V 

U0.25 - V 

Cl) 
z 
WJ 0.2 -1 

0.1 

0.05 

0 1 2 3 4 5 6 7 8 9 10 

Fig. 9. Phase-type fits of order p =2 -- -, and p =4 , to the telephone data of type 7. 
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TELEPHONE DATA OF TYPE 4 
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0. 1~~~~~~~~ 
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Fig. IO. Fits to the telephone data of type 4. Comparison of two fitted Coxian distributions (both of order p = 3), 
started with different initial values of the parameters. 

Coxian structures gave the same log likelihood value. Of course, the Coxian structure has the 
advantage of being much faster to fit. 

Another example of the algorithm converging to different local maxima (probably) when 
started from different initial values of the parameters, is shown in Fig. 10. Here a Coxian 
structure of order 3 has been fitted; in both cases using 5000 iterations. 

5.7. Some final remarks 

A theoretical property of a phase-type distribution is that it always has an Erlang-like tail: 

F(u) = 1 - reTue - cuk - Iepu 

where p is the (real) eigenvalue of T with the largest real part. This tail behaviour of course 
implies that the failure rate r(u) converges to a constant, as u -o co, a fact that can be seen 
in our failure rate plots. Probabilistically one can think of the Markov process, conditioned 
on non-absorption, approaching a quasi-stationary distribution, which makes the failure rate 
approach the corresponding weighted sum of state dependent instantaneous failure rates. 

A deeper discussion of the theoretical properties of the maximum likelihood estimates 
(which we hope to find via the EM algorithm) has been postponed for several reasons. One 
is that due to the over-parameterization the situation is somewhat non-standard, although 
usual asymptotic distribution properties concerning estimable quantities such as mean, 
median, and other quantiles, as well as distribution-, density- and failure rate functions, 
should be derivable from knowledge of the existence of a sufficiently regular unique 
parameterization. (Candidates for such a parameterization are either the zeros and poles of 
the Laplace transform, or maybe a sequence of moments, see section 2). Another reason is 
that asymptotic theory tells us nothing when we fit theoretical distributions. Also, the 
relevant asymptotic is quite hard to derive when the phase-type assumption is only an 
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approximation and not a model assumption. For a recent discussion of the latter topic see 
Hjort (1992). 
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Appendix 

A.1. Derivation of the conditional expectation 

We shall motivate the conditional expectations of the three groups of random variables: Bi, 
Zi and Ni i =1, . . .,p, j =O, 1, ... .,p, used in section 3.2. To simplify the notation we 
assume that n = 1 and consider a single Markov process J, corresponding to the phase-type 
parameters (a, T) with absorption time Y. 

It is elementary to derive the conditional expectations of the initial state indicators 

E[B I Y =y] P(Jo = i, Y e dy) Y=y] 
lP(Y c-dy) 

P(JO = i) P(Y E dy Jo =i) 

P( Ye dy) 

7i e exp {Ty}t 
X exp {Ty}t 

7ibi(yI ),T) 
itb(y I T) 

(See section 3.2 for the definition of a, b and c.) 
Almost as simple is the derivation of the conditional expectations of the occupation times 

E[Zi Y=y] = l{=i} dul Y=Y] 

= { lP(Ju = i I Y = y) du 

'IOPU = i, Yedy) 

Jo P(Y Y-dy) 

fyo P(Ju=i)lP(Yedy I Ju=i)du 
P( Y E dy) 

= JX exp {Tu}eie' exp {T(y - u)}t du 
X exp {Ty}t 

c1(y; i I7, T) 

- b(yIT) i=1 *'P- 

Here the exchange of the order of integration and conditional expectation is motivated by 
positivity of the integrand. (The fact that Ju = 0 for u > y motivates the change of the upper 
integration bound from so to y in the third equality). 

To derive the (intuitively natural) formula for the conditional expectation of the number 
of jumps between two non-absorbing states with reasonable rigour, is slightly more compli- 
cated. First observe that the expectation of the total number of jumps E[ iOj Nij] is finite (a 
fact which follows from straightforward arguments on the level of the embedded jump 
chain). Second, observe that the discrete approximations of Nij 

Z 
E{Jke = i, J(k+1)e=j} 

> 0,# 
k=O 
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are all dominated by 1i oj Nij and converge to Nij as e 4 0. Furthermore 

E[NEJ~ ~ 
'": 

| Y-y = P(Jke =i, J(k + 1I)E -j Y e dy) E[N' Y=y] = Z k1E 1 ey 
k=O P(Yedy) 

- 
(Jk? i) P(J(k + I) iJk =i) P( Y e dy I J(k + 1)= j) 

- N' 
k=O P( Ye dy) 

[Y/E] - 

Z (i exp {Tke}ei)(e exp {Te}ej)(ej exp {T(y-(k + l)s)}t) 
k=O 

i exp {Ty}t 

Jt n exp {Tu}eitjeje exp {T(y - u)}t du as e I ?, for ij 1, * * i Aj 
n exp {Ty}t 

follows from the continuity of exp {Tu} and the fact that 

exp {Te }-I 
-T as e 0. 

C 

Now dominated convergence (for conditional expectations) yields 

E[Nij I y = Y] =yo ir exp {Tu}eitije- exp {T(y - u)}t du 

I Y=y] = i~~r exp {Ty}It 

tijcj(y; i ir, T) .i. 
irb(y IT) 

Finally, the conditional expectations of the number of jumps from the non-absorbing states 
to 0 can be interpreted as the conditional probability that the final absorbing jump at time 
y came from state i. Again we can make an e-argument: 

P(J- i = y ) P= 
J = i)P(Yd JY- 

i P(Y Ye dy) 

ir exp {T(y -e)}eie exp {Te}t it = l.., Y > >? 
ir exp {Ty}It 

As e 4 0 this relation becomes 

E[NiO I y = Y]= 
7r exp {Ty}eiti 
ir exp {Ty}t 

ai(y In, T)ti P 
irb(y I T) 

A.2. EM minimizatiQn of information divergence 

The information divergence (Kullback-Leibler information or relative entropy) of the 
probability density f with respect to the probability density h is defined as Kullback (1978), 

F h(x) 
I(f, h) = Ilogf(x) h(x)1(dx) 

= flog (h(x))h(x),i(dx) - log (f(x))h(x)1l(dx), 

where both densities are assumed to be with respect to the measure ,u. From Jensen's 
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inequality we get that I(f, h) > 0, with equality iff f = h u - almost everywhere. It is also 

easy to see that I does not depend on the choice of the j-measure. 
To find J that minimizes this I-divergence over some class of densities for a given h can 

naturally be thought of as a maximum likelihood problem of infinite sample size. 
Now consider an I-divergence minimization where we wish to fit to h a density gy(y) which 

can be thought of as the density of Y = u(X), a partial observation of a random variable (or 
vector) X with densityf (x), say. The density of Y is supposed to be with respect to v = Yu-'. 
Denote the conditional density of X given Y = y by k7(x I y) and define the density h,(x) by 

hy(x) = h(u(x))k,(x I u(x)). 

Then it is straightforward to see that 

I(gy, h) = I(f , hy). 

Also, the basic additivity property of information divergence as a sum of the marginal and 

expected conditional information divergence (sometimes called the chain rule for relative 

entropy), together with the non-negativity of the I-divergence yields 

Iffy, h') 2 Iffy, hy) 

This shows that if y, minimizes y -+ I(fy, hyo) then 

I(g7 1, h) = Iffy I, hy l ) < Iffy,1, hy 0) < Iff7 o, hy 0) = I(g, 0 h)- 

We can characterize y1 as the value of y that maximizes 

L(yo, y) = flog (fy(x))hyJx)y(dx) 

= fEyo[logf,(X) I u(X) = y]h(y)v(dy). 

This motivates an algorithm for the minimization which is completely analogous to the EM 

algorithm. In the E-step we calculate 

L(Qy,, y) = f [logf (X) u(X) = y]h(y)v(dy) 

and in the M-step we find yT ?l that maximizes y -- L(yn, y). 
Certainly many of the properties and problems associated with the ordinary EM algorithm 

carry over, including problems with convergence to local minima or saddle points. 
Now suppose fJ belongs to a (possibly curved) multi-dimensional exponential family with 

density 

fy(x) = exp (O(y)'S(x) + d(O(y))}. 

Then the E-step gives 

L(y, y) = 0(y)'S. + d(O(y)), 

where 

Sn = fn[S(X) I u(X) = y]h(y)v(dy). 

In the M-step we must find vyn +1 that maximizes 

y -+ L(yn, y) = 0(y) 'Sn + d(O(y)), 

just as if 7,, was a sample average and we tried to find a maximum likelihood estimate. 
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