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Abstract
By mapping a set of input images to points in a low-
dimensional manifold or subspace, it is possible to effi-
ciently account for a small number of degrees of freedom.
For example, images of a person walking can be mapped
to a 1-dimensional manifold that measures the phase of the
person’s gait. However, when the object is moving around
the frame and being occluded by other objects, standard
manifold modeling techniques (e.g., principal components
analysis, factor analysis, locally linear embedding) try to
account for global motion and occlusion. We show how
factor analysis can be incorporated into a generative model
of layered, 2.5-dimensional vision, to jointly locate objects,
resolve occlusion ambiguities, and learn models of the ap-
pearance manifolds of objects. We demonstrate the algo-
rithm on a video consisting of four occluding objects, two
of which are people who are walking, and occlude each
other for most of the duration of the video. Whereas stan-
dard manifold modeling techniques fail to extract informa-
tion about the gaits, the layered model successfully extracts
a periodic representation of the gait of each person.

1 Introduction
High-dimensional data such as images often lie in a much
lower-dimensional manifold or subspace, that is specified
by a small number of underlying degrees of freedom. In im-
ages of a person walking, the state of the walk can be repre-
sented by a single number that corresponds to the angle be-
tween the legs. In images of a face with various expressions,
the state of the face can be represented by one number for
each muscle in the face. Generally, the relationship between
the input image and the manifold is nonlinear, but useful re-
sults have been obtained using linear mappings between the
input and the manifold. A linear mapping can be found by
computing the eigenvectors of the covariance matrix (a.k.a.
principal components analysis) [1], or by learning a proba-
bility model called a factor analyzer [2].

Linear subspace models have been used successfully for

recognizing patterns [3, 4, 5, 6, 7, 8, 9], modeling lighting
[10], analyzing motion (c.f. [11] for an excellent review),
tracking objects [12], jointly tracking objects and recogniz-
ing patterns [13], and analyzing human gait [14]. When
the input images contain transformations such as transla-
tions, rotations,etc., transformation-invariant linear sub-
space models can be used [15]. When the input images
contain outliers, robust estimates of linear mappings can be
computed [16].

In cases where linear manifold models do not suffice,
they can often be modified so that they work well. If the
data is locally linear, mixtures of linear models can be used
[17, 18, 19], or techniques for locally linear embedding
can be applied [20]. For highly nonlinear mappings, a dis-
crete approximation can be used globally, while at the lo-
cal level, the data is modeled using a linear manifold. [21]
show that the subspace of gestures can be effectively dis-
cretized for the purpose of gesture recognition. [22, 23]
show that the subspace of transformations (translations, ro-
tations,etc.) can be efficiently discretized for the purpose
of transformation-invariant clustering.

The above techniques for estimating linear subspaces are
quite effective when the input images contain un-occluded
examples of the objects. However, when objects occlude
each other, these techniques extract subspaces that try to
account for changes in appearance due to occlusion, instead
of the more interesting and potentially useful subspaces that
account for changes in appearance due to the underlying de-
grees of freedom for each object. For example, Fig. 1 shows
12 images from a 120-frame video sequence of two people
walking behind a parked car and in front of a garden. In
most frames of the video sequence, the man in blue-jeans
is occluded (either partly or almost completely) by the man
pushing the baby carriage. To properly extract the under-
lying degrees of freedom for each object, it is necessary to
identify other, occluding objects in the scene and “subtract”
them out of the image.

Although greedy techniques can be used to remove one



Figure 1:Images from a 120-frame video of 2 people walking behind a parked car and in front of a static garden.

object at a time [24], we believe that a more principled
approach is to formulate a probability model of the entire
scene and then perform inference in this model to jointly
recover multiple objects [25]. In our probability model,
the 3-dimensional scene is approximately described by a
layered set of 2-dimensional appearance maps and trans-
parency maps [26]. Previously, we showed how the mean
appearance of each object in a layered model can be learned
[25]. An advantage of this approach is that the scene can be
“filled in” behind occlusions, using the estimated mean ap-
pearances. However, without a subspace model, the mean
appearance does not account for deformations and impor-
tant degrees of freedom, such as the phase of a walking per-
son’s gait, cannot be extracted.

In this paper, we describe a generative probability model
and an approximate inference and learning algorithm that
can jointly decompose an input video into a layered repre-
sentation of the objects in a scene, and infer a linear sub-
space model of each object. Once learned, the subspace
models can be used to specify the underlying degrees of
freedom of each object in the scene. We compare the lay-
ered subspace model with eigen-vector based technique, on
the task of extracting the phase of the gait for each of two
people in the above video.
MATHEMATICAL NOTATION

If x andy are two vectors,xy denotes the vector given
by the element-wise product ofx andy. If x is a vector,

xn is the vectorx with each element raised to the powern.
If A is a matrix andx is a vector,A + x = A + diag(x),
wherediag(x) is the diagonal matrix withx on its diagonal.

2 Layered Subspace Models
Fig. 2 shows the Bayesian network for a 4-layer generative
model, where the layers are arranged horizontally, and the
generative steps within each layer are arranged vertically.
This model was learned from the video sequence described
above, using the approximate inference and learning algo-
rithm described later in this paper. The top row of images
show some model parameters, which are shared across all
video frames. These include the mean appearance map and
the mean transparency map for each of the 4 layers. To gen-
erate a particular video frame, a point in the subspace is ran-
domly drawn from a Gaussian. Through a linear projection,
this subspace coordinate is used to produce a deformed ver-
sion of the appearance map and transparency map. In this
example, the 1st and 4th layers contain static objects (the
car and the background shrubbery), but the 2nd and 3rd lay-
ers contain people whose arms and legs are moving. Next,
a position is drawn for each layer and the appearance and
transparency maps are translated appropriately. Finally, the
video frame is generated by an ordered composition of the
appearance maps, using the transparency maps, where the
layers are combined from right to left.
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Figure 2: A Bayesian network showing how multiple subspace models (columns) combine in a layered fashion to describe
a video frame. The top row of pictures shows some of the model parameters, which are the same for all video frames. The
remaining pictures show the configurations of the hidden variables for the current video frame.

In a layered subspace model, the contribution from layer
` is specified by an appearance map vectors` and a trans-
parency map vectorm`. Each entry in the transparency
map is between 0 and 1 and specifies to what degree the
corresponding pixel is transparent. When forming the in-
put, layer̀ contributes pixel intensitiesm`s` (see the above
section,MATHEMATICAL NOTATION). When the input is
formed, some of the pixel intensities contributed by layer`
will be over-written by layers closer to the input. If layeri
is closer to the input than layer`, then the pixel intensities
contributed by layer̀ is masked by1−mi. Taking` = 1 to
be the layer that is closest to the camera and` = L to be the
layer that is farthest from the camera, the total contribution
that layer̀ makes to the input is(

∏`−1
i=1(1−mi))m`s`.

It is often convenient to allow the appearance map and
transparency map to be transformed before being used to
form the input For example, when combining images of ob-
jects to form an input image, it is useful to allow the im-
age for each object to translate, rotate,etc. To account for
transformations of the images in layer`, we introduce a dis-
crete, random transformation operator,T` [27]. T` can be

thought of as a permutation matrix that rearranges the pix-
els. For example, to account for all translations in aJ × J
image,T` can take onJ2 values – the permutation matri-
ces that account for all translations. Layer` contributes a
transformed appearance mapT`s` and a transformed trans-
parency mapT`m`, so the total contribution that layer`
makes to the input is

(∏`−1
i=1(1−Timi)

)
T`m`T`s`.

After the nonlinear masking operation, the contributions
from all layers can be added together to approximate the
input image,x, as shown in the bottom part of Fig. 2. As-
suming the approximation error is Gaussian, we have

p(x|{s`,m`,T`}L`=1)

= N
(
x;

L∑
`=1

((`−1∏
i=1

(1−Timi)
)
T`m`T`s`

)
,ψ

)
, (1)

whereN (·; ·, ·) denotes the multivariate normal density
function, andψ is a vector of pixel variances

The manifolds of appearance and transparency in each
layer` are modeled using a factor analyzer, whose parame-
ters depend on the class of the object,c`. This approximates



the true manifolds using a linear subspace, plus Gaussian
noise. Assuming the subspace coordinatez` is zero-mean,
unit-covariancea priori, the joint distribution over the ap-
pearance, transparency, transformation, class, and subspace
coordinate in layer̀ is

p(s`,m`,T`, c`, z`) = ρT`,c`
N (s`;µs

c`
+ Λs

c`
z`,φ

s
c`

)
·N (m`;µm

c`
+ Λm

c`
z`,φ

m
c`

)N (z`;0, I).

ρT`,c`
is the probability of object classc` and transforma-

tion T`. µs
c`

, Λs
c`

andφs
c`

are the mean, factor loading ma-
trix, and noise variances for the appearance map from class
c`. µm

c`
, Λm

c`
andφm

c`
are the same for the transparency map

from classc`.
The joint distribution over all variables is given by

p(x, {s`,m`,T`, c`, z`}L`=1) =

p(x|{s`,m`,T`}L`=1)
L∏

`=1

p(s`,m`,T`, c`, z`).

Reasoning about the input video consists of estimating the
parameters of this model, and inferring the distributions
over the hidden variables. For example, if the model has
been properly fit to the data,p(s`|x) reveals the appearance
of the object in layer̀ , even when the object is occluded in
the input frame. Parts of the object that are occluded will
be automatically filled in using the model parameters, the
inferred subspace coordinate, the inferred transformation,
etc.As another example,p(z`|x) gives the distribution over
the subspace coordinate for the object in layer`, and can
be used,e.g., to track underlying degrees of freedom, such
as the gait of a walking person (see Scn. 4). In the next
section, we describe an efficient inference and learning al-
gorithm for this model.

It turns out it is sometimes useful to integrate over vari-
ables,e.g., to derive inference algorithms that are more ex-
act, as described in the next section. By integrating over
the subspace coordinate, we obtain a closed-form expres-
sion for the distribution over the appearance, transparency,
transformation and class for layer`:

p(s`,m`,T`, c`) = ρT`,c`
N (s`;µs

c`
,Λs

c`
Λs

c`

T + φs
c`

)

·N (m`;µm
c`

,Λm
c`
Λm

c`

T + φm
c`

),

where “T” indicates matrix transpose. Then, the
joint distribution over all variables except the subspace
coordinates is given byp(x, {s`,m`,T`, c`}L`=1) =
p(x|{s`,m`,T`}L`=1)

∏L
`=1 p(s`,m`,T`, c`).

In the above models, the variables from the different lay-
ers combine multiplicatively, and the total number of trans-
formations is exponential in the number of layers, so exact
inference in this model is intractable. Instead, we have de-
rived several efficient, approximate inference techniques.

3 Efficient Probabilistic Reasoning,
Inference and Learning

Reasoning in a hierarchical probability model consists of
computing posterior distribution over hidden variablesh
given visible variablesv, and estimating model parame-
ters. We have explored several principled algorithms for ap-
proximate inference and learning in vision applications, in-
cluding iterative conditional modes, Gibbs sampling, vari-
ational techniques, structured variational techniques, and
the sum-product algorithm(a.k.a. loopy belief propaga-
tion). All of these techniques replace the intractable compu-
tation of the posterior distributionp(h|v) with a search for
a simplified distributionq(h), that is made close top(h|v)
by minimizing a “free energy”:

F =
∫

h

q(h) log
q(h)

p(h, v)

=
∫

h

q(h) log
q(h)

p(h|v)
− log p(v) ≥ − log p(v).

Minimizing F w.r.t. q(h) minimizes the relative entropy be-
tweenq(h) andp(h|v). Minimizing F w.r.t. q(h) and the
model parameters minimizes an upper bound on the nega-
tive log-probability of the data. See [28] for a tutorial.

The algorithms we have studied for learning manifolds
of occluded objects in layers can be viewed as gener-
alizations of our previous algorithms for transformation-
invariant clustering [22, 23], transformation-invariant di-
mensionality reduction [29], and learning flexible sprites
in video layers [25]. In the layered subspace model, given
the appearance, transparency and object class in layer`, the
mean and variance of the subspace coordinate can be com-
puted easily using linear algebra. So, our inference engine
operates on the model described in the previous section,
where the subspace coordinates are integrated out. The ap-
proximation to the posterior is

q({s`,m`,T`, c`}L`=1) ≈ p({s`,m`,T`, c`}L`=1|x),

where the form ofq is restricted, as described below.
When selecting the form of theq-distribution for a spe-

cific problem, choices must be made about where uncer-
tainty will be accounted for. In the layers model, a bad local
optimum can occur if the inference and learning algorithm
incorrectly orders the objects early on during learning and
is unable to correct the mis-ordering. So, theq-distribution
should account for the full joint distribution over the class
labels of the objects in all layers,C = {c`}L`=1

1. Using
point estimates for the other hidden variables, we obtain the

1If the number of configurations ofC is too large, a factorized approx-
imation,q(C) =

∏L
`=1 q(c`) can be used.



following q-distribution:

q({s`,m`,T`, c`}L`=1) =

q(C)
L∏

`=1

(
δ(T` − T̂`,C)δ(s` − ŝ`,C)δ(m` − m̂`,C)

)
,

whereδ(·) is the Dirac delta function.q(C) is the joint dis-
tribution of the class labels of the objects in all layers.T̂`,C ,
ŝ`,C andm̂`,C are point estimates of the transformation, ap-
pearance and mask, given the class labels.

Given a set of model parameters, inference consists of
minimizing F by settingx to the observed input and for
each configuration ofC = {c`}L`=1, iteratively updating the
estimateŝs`,C , m̂`,C andT̂`,C until convergence. Once this
is done for every configuration ofC, the joint probability is
used to computeq(C):

q(C) ∝ p(x, {ŝ`,C , m̂`,C , T̂`,C}L`=1, C).

We now describe the updates forŝ`,C , m̂`,C and T̂`,C .
Since these estimates are applied recursively while holding
C fixed, we simplify notation by referring to them ass`, m`

andT`. The updates can be written concisely in terms of
the following intermediate variables:

m̄1:`=
∏̀
i=1

(1−Timi), x̂1:`=
∑̀
j=1

m̄1:j−1TjmjTjsj ,

x̂`:L=
L∑

j=`

m̄1:j−1

m̄1:`−1
TjmjTjsj .

m̄1:` is the composition of the inverse transparency maps
from layer1 to layer `. x̂1:` is the estimate of the input,
as given by layers1 to `. x̂`:L is the estimate of the input,
as given by layers̀ to L (the fraction removes the inverse
transparency maps from layer1 to layer ` − 1). For any
layerk, the data likelihood can be expressed as

p(x|{s`,m`,T`}L`=1) =

N
(
x; x̂1:k+m̄1:k

(
TkmkTksk+Tk(1−mk)x̂k+1:L

)
,ψ

)
,

wherex̂1:k, m̄1:k andx̂k+1:L do not depend directly onsk,
mk or Tk. Using this form of the likelihood, it is straight-
forward to derive the inference updates.

The update for the transformation in thekth layer is

Tk ← argminTk
ψ−T

(
x− x̂1:k−

m̄1:k

(
TkmkTksk + Tk(1−mk)x̂k+1:L

))2

,

which selects the transformation that best matches the input
with the transformed appearance and transparency maps in

thekth layer plus the estimate of the input from the layers
above and below layerk.

The update for the appearance map in layerk is

sk ←
(
(Λs

ck
Λs

ck

T+φs
ck

)−1+m2
kT

−1
k

(
ψ−1m̄2

1:k−1

))−1

·
(
(Λs

ck
Λs

ck

T+φs
ck

)−1µs
ck

+mkT−1
k

(
ψ−1m̄1:k−1

·(x−x̂1:k−1−m̄1:k−1(1−Tkmk)x̂k+1:L)
))

.

The appearance map is given by a weighted sum of the prior
predictionµs

ck
, and the masked discrepancy between the

input and the estimate of the input given by layers above
and below layerk.

The update for the transparency map in layerk is

mk ←
(
(Λm

ck
Λm

ck

T+φm
ck

)−1+

T−1
k

(
ψ−1m̄2

1:k−1(Tksk−x̂k+1:L)2
))−1

·
(
(Λm

ck
Λm

ck

T+φm
ck

)−1µm
ck
+

T−1
k

(
ψ−1m̄1:k−1(Tksk−x̂k+1:L)

)
(x−x̂1:k−1−m̄1:k−1x̂k+1:L

))
.

The transparency map is given by a weighted sum of the
prior predictionµm

ck
, and the product of the data predicted

in layer k with the discrepancy between the input and the
estimate of the input given by layers above and below layer
k.

Once probabilistic inference is complete for each video
frame, the parameters are updated by minimizingF w.r.t.
the model parameters. For example,µs

i is set to the aver-
age value of(

∑
C

∑
`:c`=i q(C)ŝ`,C)/(

∑
C

∑
`:c`=i q(C)),

over the entire training set, whereq(C) weighs the filled-in
appearanceŝs`,C according to the posterior probability of
the configuration of class labels,C. The updates for the
factor loading matrices (Λ’s) and object noise covariance
matrices (φ’s) are similar to the standard factor analysis up-
dates [2], except that, again,q(C) is used to weigh the filled
in values according to the posterior probability of the class
labels.

4 Experimental Results
We trained a 4-layer model with 4 classes and a 2-
dimensional manifold for each class, on a video sequence
containing120 100 × 250 video frames, 12 of which are
shown in Fig. 1. The transformations included all horizon-
tal and vertical translations. The parameters were initialized
by setting the means to random values between0 and1 (the
maximum pixel intensity), and setting the factor loading
matrix entries to random values between−0.001 and0.001.



Figure 3:Reconstructing the input with layer 2 deleted.

The parameters were updated 100 times, and for each pa-
rameter update, 3 iterations of the above variable updates
were applied. The training time was 5 hours on a 2GHz
Pentium. Fig. 2 shows the means of the appearance maps
and transparency maps that were learned, along with the in-
ferred hidden variables (appearance, transparency, subspace
coordinate, position) for one video frame.

Once learned, the model can be used for analyzing the
subspaces of the objects, and for visualization. For exam-
ple, the transparency map for a particular layer can be set
to 0, causing that layer to disappear when the input is re-

Figure 4: Top: The 1-D subspace coordinates for layer 3
(red, solid) and layer 2 (green, dashed). Second: The 2-D
subspace coordinate obtained by applying PCA to the entire
video sequence. Third: The 2-D subspace coordinate ob-
tained by applying PCA to a video with the man in blue-jeans
cropped by hand. Fourth: The same for the man pushing the
baby carriage is tracked.

constructed. Fig. 3 shows some of the input frames, along
with the reconstruction with layer 3 removed. The sub-
space model automatically fills in the appearance of oc-
cluded parts of the image, despite deformations.

Next, we show that despite occlusions, the layered sub-
space model is able to recover the phase of the gait of the
two people in the above video sequence. To this end, we
retrained the above model using 1 dimension for each sub-



Figure 5:The input video frames corresponding to the minima and the maxima of the learned subspace coordinate for layer 3
are shown. The subspace coordinate clearly indicates the phase of the gait of the person in layer 3 (the man in blue-jeans).

space. The graph at the top of Fig. 4 shows the inferred
1-D subspace coordinate (z) for each of the two moving
layers (layers 2 and 3). The phase of the walking motion
is clear for both layers, even though layer 2 occludes layer
3 for most of the duration of the video. Notice that layer
3 undergoes more cycles than layer 2, which agrees with
the fact that the person in layer 3 is walking more quickly
than the person in layer 2. In Fig. 4, we also compare the
layered subspace model with non-layered techniques. The
2-D subspace coordinate obtained by applying PCA to the
pixel-pixel covariance matrix estimated from all 120 video
frames is shown in the second graph. The gait of the walk-
ers is not evident in these signals; instead, the subspace ac-
counts for the motion of the two walkers. We also applied
standard PCA to 2 cropped videos, each of which contains a
stabilized sequence of one or the other of the walkers. The
bottom two graphs in Fig. 4 show the corresponding 2-D
subspace coordinates. Again, the phase of the gait of each
walker is not evident in these graphs.

To clearly demonstrate that the top graph in Fig. 4 has ex-
tracted the gait of the walkers, in Fig. 5 we show the video
frames corresponding to the local maxima and local min-
ima of the subspace coordinate for layer 3 (the occluded ob-
ject), found by running a peak detector with width11 video
frames. It is clear that the maxima correspond to frames
where the man in blue-jeans has his arm extended and his
legs apart, whereas the minima correspond to frames where
his arms are at his side and his legs are together.

5 Employing Deformation Fields
Instead of directly learning the linear mapping from the sub-
space to the image, it is often useful to use a set of basis
vectors and learn the covariance of the basis vector coeffi-
cients. In [30], we describe a generative model of smoothly
deformed images, using a low-frequency wavelet basis.

When the deformations are small, we can approximate
the deformed image of a vector of pixel intensitiess for an
image bỹs = s + (∂s/∂x)δx + (∂s/∂y)δy, where[δx, δy]
is a deformation field (a vector field that specifies where to
shift pixel intensity), and∂s/∂x and∂s/∂y are the gradient
images w.r.t. horizontal and vertical shift respectively.

A smooth deformation field can be constructed from
low-frequency wavelets:δx = Rzx, δy = Rzy, where
z = [zx; zy] are the deformation coefficients, and columns
of R are low-frequency wavelet basis vectors. Approx-
imating the derivatives described above by sparse matri-
cesGx and Gy that operate on an input image to com-
pute finite differences, we can expresss̃ as s̃ = s +
(Gxs)(Rzx) + (Gxs)(Rzy), or s̃ = s + Λ(s)z, where
Λ(s) = [diag(Gxs)R diag(Gys)R]. This is similar
to the factor analysis model used in the layered subspace
model described above, whereΛ(s) corresponds to the fac-
tor loading matrix. Algorithms for probabilistic inference
and learning in layered models of deformation fields can be
derived by taking into account the fact that the factor load-
ing matrixΛ is a function of the latent appearance map or
transparency map.



6 Summary
Linear subspace models have been shown to be very ef-
fective for extracting low-dimensional manifolds of appear-
ances of objects in images. However, when objects occlude
one-another, standard subspace modeling techniques fail.
We described a way to place a standard technique for lin-
ear subspace modeling, factor analysis, into a layered gen-
erative model of 2.5-dimensional vision that accounts for
occlusion. Importantly, because our approach is to avoid
bottom-up hacks and instead present a clearly formulated
probability model, other probabilistic techniques for model-
ing manifolds can be incorporated into our model,e.g.gen-
erative topographic maps [31] and probabilistic versions of
bilinear models .

Exact probabilistic inference and learning in this model
is intractable, due to the nonlinear interactions between the
transparency maps (masks) and appearance maps, and also
due to the huge number of possible configurations of class
labels and transformations associated with the objects in
all layers. We presented an efficient, approximate infer-
ence and learning technique that minimizes the relative en-
tropy (Kullback-Leibler divergence) between the true poste-
rior distribution and an approximation to the true posterior,
and maximizes a strict lower bound on the log-likelihood
of the data. We showed that this algorithm can be used to
extract separate manifolds of multiple, deforming objects,
even when they occlude each other.
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