Programovanie (1) v C/C++
1-INF-127, ZS 2024/25

Úvod · Pravidlá · Prednášky · Softvér · Testovač
· Kontaktujte nás pomocou e-mailovej adresy E-prg.png (bude odpovedať ten z nás, kto má príslušnú otázku na starosti alebo kto má práve čas).
· Prosíme študentov, aby si pravidelne čítali e-maily na @uniba.sk adrese alebo aby si tieto emaily preposielali na adresu, ktorú pravidelne čítajú.


Prednáška 20: Rozdiel medzi revíziami

Z Programovanie
Skočit na navigaci Skočit na vyhledávání
 
(11 medziľahlých úprav od 2 ďalších používateľov nie je zobrazených)
Riadok 10: Riadok 10:
 
Cvičenia a úlohy
 
Cvičenia a úlohy
 
* Cvičenia bežia normálne každý utorok, piatkové cvičenia už iba 2x.
 
* Cvičenia bežia normálne každý utorok, piatkové cvičenia už iba 2x.
* Ak ste na cvičení nezískali 5 bodov, sú pre vás povinné cvičenia v piatok. Dobrá príležitosť spýtať sa na nejasné veci v cvičeniach, prednáškach. Môžete aj trénovať prvý príklad zo skúšky alebo preriešiť si ukážkový test.
+
* Ak ste na cvičení nezískali 5 bodov, sú pre vás povinné cvičenia v piatok. Dobrá príležitosť spýtať sa na nejasné veci v cvičeniach, prednáškach, domácej úlohe. Môžete aj trénovať prvý príklad zo skúšky alebo preriešiť si ukážkový test.
 
* Budúci utorok bude teoretická rozcvička na papieri, bude zahŕňať učivo po prednášku 19.
 
* Budúci utorok bude teoretická rozcvička na papieri, bude zahŕňať učivo po prednášku 19.
 
* Tretiu domácu úlohu treba odovzdať do budúceho utorka 5.12. 22:00.
 
* Tretiu domácu úlohu treba odovzdať do budúceho utorka 5.12. 22:00.
Riadok 36: Riadok 36:
 
* Decembrový termín odporúčame hlavne študentom, ktorým programovanie nerobí problémy.
 
* Decembrový termín odporúčame hlavne študentom, ktorým programovanie nerobí problémy.
 
* Viac informácií o skúške je na stránke [[Zimný semester, skúška]], spolu cez to prejdeme budúcu stredu.
 
* Viac informácií o skúške je na stránke [[Zimný semester, skúška]], spolu cez to prejdeme budúcu stredu.
* Na testovač tento týždeň pridáme zopár tréningových príkladov na skúšku.
+
* Na testovači dnes po prednáške pribudne zopár tréningových príkladov na skúšku, všetky sa týkajú už prebraného učiva. Ďalšie dva tréningové príklady pridáme neskôr.
  
 
==Opakovanie z minulej prednášky==
 
==Opakovanie z minulej prednášky==
Riadok 56: Riadok 56:
 
* Operátory a čísla tvoria tzv. ''uzly'' (alebo ''vrcholy'') stromu.
 
* Operátory a čísla tvoria tzv. ''uzly'' (alebo ''vrcholy'') stromu.
 
* Operátory tvoria tzv. ''vnútorné uzly'' stromu, každý z nich má dve ''deti'' zodpovedajúce podvýrazom pre jednotlivé operandy.
 
* Operátory tvoria tzv. ''vnútorné uzly'' stromu, každý z nich má dve ''deti'' zodpovedajúce podvýrazom pre jednotlivé operandy.
 +
** Pre jednoduchosť na dnešnej prednáške neuvažujeme unárne mínus, dalo by sa však ľahko dorobiť.
 
* Čísla tvoria tzv. ''listy'' stromu, tie už nemajú žiadne deti.  
 
* Čísla tvoria tzv. ''listy'' stromu, tie už nemajú žiadne deti.  
 
* Strom obsahuje jediný uzol, ktorý nemá rodiča. Tento sa nazýva ''koreň'' stromu a reprezentuje celý aritmetický výraz.  
 
* Strom obsahuje jediný uzol, ktorý nemá rodiča. Tento sa nazýva ''koreň'' stromu a reprezentuje celý aritmetický výraz.  
 
* Informatici stromy väčšinou kreslia „hore nohami”, s koreňom na vrchu.
 
* Informatici stromy väčšinou kreslia „hore nohami”, s koreňom na vrchu.
  
Uzol takéhto stromu tak môžeme reprezentovať napríklad nasledujúcou štruktúrou:
+
Uzol takéhoto stromu tak môžeme reprezentovať napríklad nasledujúcou štruktúrou:
  
 
<syntaxhighlight lang="C++">
 
<syntaxhighlight lang="C++">
 
struct treeNode {
 
struct treeNode {
     // ciselna hodnota (zmysluplna len v listoch)
+
     // číselná hodnota (len v listoch)
     double val;    
+
     double val;
  
     // operator vo vnutornych uzloch, pre listy rovny medzere
+
     // operátor vo vnútorných uzloch, pre listy medzera
     char op;        
+
     char op;
  
     // smernik na koren podstromu reprezentujuceho lavy podvyraz
+
     // smerníky na podstromy
    // alebo NULL v liste
+
     treeNode * left, * right;
     treeNode *left
 
    // smernik na koren podstromu reprezentujuceho pravy podvyraz
 
    // alebo NULL v liste
 
    treeNode *right;  
 
 
};
 
};
 
</syntaxhighlight>
 
</syntaxhighlight>
Riadok 179: Riadok 176:
 
=== Uvoľnenie pamäte ===
 
=== Uvoľnenie pamäte ===
  
Nasledujúca funkcia uvoľní z pamäte celý strom s koreňom <tt>root</tt>
+
Nasledujúca funkcia uvoľní z pamäte celý strom s koreňom <tt>root</tt>.
* Opäť používa rekurziu na prejdenie celého stromu
+
* Opäť používa rekurziu na prejdenie celého stromu.
 
* Pozor na poradie príkazov, treba najskôr uvoľniť podstromy až potom zavolať delete na root, inak by sme stratili prístup k deťom.
 
* Pozor na poradie príkazov, treba najskôr uvoľniť podstromy až potom zavolať delete na root, inak by sme stratili prístup k deťom.
 
* Všimnite si, ako sú riešené triviálne prípady,  funkcia ani nezisťuje, s akým typom uzla pracuje.
 
* Všimnite si, ako sú riešené triviálne prípady,  funkcia ani nezisťuje, s akým typom uzla pracuje.
Riadok 203: Riadok 200:
  
 
<syntaxhighlight lang="C++">
 
<syntaxhighlight lang="C++">
void printInorder(FILE *fw, treeNode *root) {
+
/** Funkcia vypíše aritmetický výraz v inorder poradí */
 +
void printInorder(treeNode * root) {
 
     if (root->op == ' ') {
 
     if (root->op == ' ') {
         fprintf(fw, "%.2f", root->val);
+
         printf("%g", root->val);
 
     } else {
 
     } else {
         fprintf(fw, "(");
+
         printf("(");
         printInorder(fw, root->left);
+
         printInorder(root->left);
         fprintf(fw, " %c ", root->op);
+
         printf(" %c ", root->op);
         printInorder(fw, root->right);
+
         printInorder(root->right);
         fprintf(fw, ")");
+
         printf(")");
 
     }
 
     }
 
}
 
}
</syntaxhighlight>
 
  
<syntaxhighlight lang="C++">
+
/** Funkcia vypíše aritmetický výraz v preorder poradí */
void printPreorder(FILE *fw, treeNode *root) {
+
void printPreorder(treeNode * root) {
 
     if (root->op == ' ') {
 
     if (root->op == ' ') {
         fprintf(fw, "%.2f ", root->val);
+
         printf("%g ", root->val);
 
     } else {
 
     } else {
         fprintf(fw, "%c ", root->op);
+
         printf("%c ", root->op);
         printPreorder(fw, root->left);
+
         printPreorder(root->left);
         printPreorder(fw, root->right);
+
         printPreorder(root->right);
 
     }
 
     }
 
}
 
}
</syntaxhighlight>
 
  
<syntaxhighlight lang="C++">
+
/** Funkcia vypíše aritmetický výraz v postorder poradí */
void printPostorder(FILE *fw, treeNode *root) {
+
void printPostorder(treeNode * root) {
 
     if (root->op == ' ') {
 
     if (root->op == ' ') {
         fprintf(fw, "%.2f ", root->val);
+
         printf("%g ", root->val);
 
     } else {
 
     } else {
         printPostorder(fw, root->left);
+
         printPostorder(root->left);
         printPostorder(fw, root->right);
+
         printPostorder(root->right);
         fprintf(fw, "%c ", root->op);
+
         printf("%c ", root->op);
 
     }
 
     }
 
}
 
}
Riadok 283: Riadok 279:
  
  
Túto funkciu možno jednoducho prepísať tak, aby namiesto vyhodnocovania výrazu konštruovala zodpovedajúci aritmetický strom. Namiesto hodnôt jednotlivých podvýrazov stačí na zásobníku uchovávať korene stromov, ktoré tieto podvýrazy reprezentujú. Aplikácii aritmetickej operácie potom bude zodpovedať spojenie dvoch podstromov do jedného stromu:
+
* Túto funkciu možno jednoducho prepísať tak, aby namiesto vyhodnocovania výrazu konštruovala zodpovedajúci aritmetický strom.  
 +
* Namiesto hodnôt jednotlivých podvýrazov stačí na zásobníku uchovávať korene stromov, ktoré tieto podvýrazy reprezentujú.  
 +
* Aplikácii aritmetickej operácie bude zodpovedať spojenie dvoch podstromov do jedného stromu.
 +
* V tomto prípade nepoužívame postupnosť symbolov (tokenov), ale priamo spracovávame postfixový výraz vo forme reťazca.
  
 
<syntaxhighlight lang="C++">
 
<syntaxhighlight lang="C++">
Riadok 290: Riadok 289:
  
 
/* Sem príde definícia štruktúry pre zásobník a všetkých funkcií poskytovaných zásobníkom. */
 
/* Sem príde definícia štruktúry pre zásobník a všetkých funkcií poskytovaných zásobníkom. */
 
+
treeNode * postfixToTree(char * str) {
treeNode * postfixToTree(tokenSequence & tokens) {
 
 
     // zásobník, do ktorého ukladáme korene podstromov
 
     // zásobník, do ktorého ukladáme korene podstromov
 
     stack treeStack;
 
     stack treeStack;
 
     init(treeStack);
 
     init(treeStack);
  
     for (int i = 0; i < tokens.length; i++) {
+
     int strPos = 0; // pozícia v rámci reťazca
        // aktuálny token zo vstupu
+
    while (str[strPos] != 0) { // kým nie sme na konci str
         token curToken = tokens.items[i];
+
         if (isspace(str[strPos])) {  // preskakujeme biele znaky
         if (curToken.op == ' ') {
+
            strPos++;
             // čísla ukladáme na zásobník ako listy stromu
+
         } else if (isdigit(str[strPos]) || str[strPos] == '.') {
             push(treeStack, createNum(curToken.val));
+
             // keď nájdeme cifru alebo bodku (začiatok čísla)
 +
            double val;
 +
            int skip;
 +
            // načítame toto číslo pomocou sscanf,
 +
            // do skip uložíme počet znakov čísla
 +
            sscanf(&(str[strPos]), "%lf%n", &val, &skip);
 +
            // preskočíme všetky znaky čísla
 +
            strPos += skip;
 +
 
 +
            // vytvoríme list a uložíme na zásobník
 +
             push(treeStack, createNum(val));
 
         } else {
 
         } else {
 
             // spracovanie operátora
 
             // spracovanie operátora
 +
            assert(strchr("+-/*", str[strPos]) != NULL);
 
             treeNode * left, * right;
 
             treeNode * left, * right;
             // vyberieme 1 alebo 2 podstromy zo zásobníka
+
             // najskôr vyberieme 2 podstromy zo zásobníka
             // vytvoríme nový koreň, ktorý bude ich rodičom a vložíme na zásobník
+
             // vytvoríme nový koreň,
             if (curToken.op == '~') {
+
            // ktorý bude ich rodičom a vložíme na zásobník
                left = pop(treeStack);
+
             right = pop(treeStack);
                push(treeStack, createOp(curToken.op, left, NULL));
+
             left = pop(treeStack);
             } else {
+
            push(treeStack, createOp(str[strPos], left, right));
                right = pop(treeStack);
+
             strPos++;
                left = pop(treeStack);
 
                push(treeStack, createOp(curToken.op, left, right));
 
             }
 
 
         }
 
         }
 
     }
 
     }
Riadok 329: Riadok 335:
 
=== Ukážkový program pracujúci so stromami pre aritmetické výrazy ===
 
=== Ukážkový program pracujúci so stromami pre aritmetické výrazy ===
  
Nasledujúci program prečíta z konzoly aritmetický výraz v postfixovom tvare, skonštruuje jeho aritmetický strom a následne preň zavolá funkcie na výpočet hodnoty výrazu a jeho výpis v rôznych notáciách:
+
Nasledujúci program prečíta z konzoly aritmetický výraz v postfixovom tvare, skonštruuje jeho aritmetický strom a následne preň zavolá funkcie na výpočet hodnoty výrazu a jeho výpis v rôznych notáciách. Celý program je [[#Program_pre_aritmetick.C3.A9_v.C3.BDrazy_ako_stromy|na konci prednášky]].
  
 
<syntaxhighlight lang="C++">
 
<syntaxhighlight lang="C++">
int main(void) {          
+
int main() {
     char expr[100];  
+
    // načítame postfixový výraz do reťazca
     fgets(expr, 100, stdin);
+
    const int maxLine = 100;
     treeNode *root = parsePostfix(expr);  
+
     char postfix[maxLine];
 
+
     fgets(postfix, maxLine, stdin);
     printf("Hodnota vyrazu je: %.2f\n", evaluateTree(root));
+
    // výraz konvertujeme na strom
     printf("Vyraz v infixovej notacii: ");
+
     treeNode * root = postfixToTree(postfix);
 +
    // spočítame hodnotu výrazu
 +
    double value = evaluateTree(root);
 +
     printf(" value: %g\n", value);
 +
    // vypíšeme vo všetkých troch notáciách
 +
     printf(" inorder: ");
 
     printInorder(stdout, root);
 
     printInorder(stdout, root);
     printf("\n");
+
     printf("\n predorder: ");
    printf("Vyraz v prefixovej notacii: ");
 
 
     printPreorder(stdout, root);
 
     printPreorder(stdout, root);
     printf("\n");
+
     printf("\n postdorder: ");
    printf("Vyraz v postfixovej notacii: ");
 
 
     printPostorder(stdout, root);
 
     printPostorder(stdout, root);
 
     printf("\n");
 
     printf("\n");
     
+
    // uvoľníme pamäť
     destroyTree(root);
+
     destroyTree(root);
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>
Riadok 361: Riadok 370:
 
* Ak je strom neprázdny, jeden jeho vrchol nazývame ''koreň'' (angl. root)
 
* Ak je strom neprázdny, jeden jeho vrchol nazývame ''koreň'' (angl. root)
 
* Každý uzol ''u'' okrem koreňa je spojený hranou s práve jedným ''rodičom'' (angl. ''parent''), ktorým je nejaký uzol ''v''. Naopak uzol ''u'' je ''dieťaťom'' (angl. ''child'') uzla ''v''.
 
* Každý uzol ''u'' okrem koreňa je spojený hranou s práve jedným ''rodičom'' (angl. ''parent''), ktorým je nejaký uzol ''v''. Naopak uzol ''u'' je ''dieťaťom'' (angl. ''child'') uzla ''v''.
* Vo všeobecnom strome môže mať každý uzol ľubovoľný počet detí (aj nula)
+
* Vo všeobecnom strome môže mať každý uzol ľubovoľný počet detí (aj nula).
 
* Strom je ''binárny'', ak má každý uzol ''najviac'' dve deti. Budeme pritom rozlišovať medzi pravým a ľavým dieťaťom.
 
* Strom je ''binárny'', ak má každý uzol ''najviac'' dve deti. Budeme pritom rozlišovať medzi pravým a ľavým dieťaťom.
* Uzly zakoreneného stromu, ktoré nemajú žiadne dieťa, nazývame ''listami''; zvyšné uzly potom nazývame ''vnútornými uzlami''.  
+
* Uzly zakoreneného stromu, ktoré nemajú žiadne dieťa, nazývame ''listami''; zvyšné uzly nazývame ''vnútornými uzlami''.  
 
* ''Predkom'' uzla ''u'' nazveme ľubovoľný uzol ''v'' ležiaci na ceste z ''u'' do koreňa stromu (vrátane ''u'' a koreňa). Naopak potom hovoríme, že ''u'' je ''potomkom'' uzla ''v''.  
 
* ''Predkom'' uzla ''u'' nazveme ľubovoľný uzol ''v'' ležiaci na ceste z ''u'' do koreňa stromu (vrátane ''u'' a koreňa). Naopak potom hovoríme, že ''u'' je ''potomkom'' uzla ''v''.  
 
* ''Podstromom'' stromu ''T'' zakoreneným v nejakom uzle ''v'' stromu ''T'' budeme rozumieť strom s koreňom ''v'' pozostávajúci zo všetkých jeho potomkov a všetkých hrán stromu ''T'' vedúcich medzi týmito uzlami.  
 
* ''Podstromom'' stromu ''T'' zakoreneným v nejakom uzle ''v'' stromu ''T'' budeme rozumieť strom s koreňom ''v'' pozostávajúci zo všetkých jeho potomkov a všetkých hrán stromu ''T'' vedúcich medzi týmito uzlami.  
Riadok 374: Riadok 383:
 
=== Štruktúra pre uzol binárneho stromu ===
 
=== Štruktúra pre uzol binárneho stromu ===
  
V nasledujúcom budeme pracovať výhradne s ''binárnymi stromami''. Štruktúra pre uzol všeobecného binárneho stromu je podobná, ako pri stromoch pre aritmetické výrazy, namiesto operátora alebo hodnoty si však v každom uzle budeme pamätať hodnotu ľubovoľného typu <tt>dataType</tt>. V nasledujúcej definícii je tento typ <tt>int</tt>.
+
V nasledujúcom budeme pracovať výhradne s ''binárnymi stromami''. Štruktúra pre uzol všeobecného binárneho stromu je podobná, ako pri stromoch pre aritmetické výrazy, namiesto operátora alebo hodnoty si však v každom uzle budeme pamätať hodnotu ľubovoľného typu <tt>dataType</tt>, napríklad <tt>int</tt>.
  
 
<syntaxhighlight lang="C++">
 
<syntaxhighlight lang="C++">
/* Typ prvkov ukladanych v uzloch binarneho stromu */
+
/* Typ prvkov ukladaných v uzloch binárneho stromu */
 
typedef int dataType;           
 
typedef int dataType;           
  
/* Uzol binarneho stromu */
+
/* Uzol binárneho stromu */
 
struct node {
 
struct node {
     // hodnota ulozena v uzle
+
     // hodnota uložená v uzle
 
     dataType data;   
 
     dataType data;   
  
     // smernik na lave dieta (NULL, ak dieta neexistuje)
+
     // smerníky na podstromy
     node *left;   
+
     treeNode * left, * right;
 
 
    // smernik na prave dieta (NULL, ak dieta neexistuje)
 
    node *right;  
 
 
};
 
};
 
</syntaxhighlight>
 
</syntaxhighlight>
Riadok 430: Riadok 436:
  
 
<syntaxhighlight lang="C++">
 
<syntaxhighlight lang="C++">
/* Funkcia pre vypis hodnoty typu dataType */
+
/* Funkcia pre výpis hodnoty typu dataType */
 
void printDataType(dataType data) {
 
void printDataType(dataType data) {
 
     printf("%d ", data);  // pre int
 
     printf("%d ", data);  // pre int
 
}
 
}
  
/* Vypise podstrom s korenom *root v poradi preorder */
+
/* Vypíše podstrom s koreňom *root v poradí preorder */
 
void printPreorder(node *root) {
 
void printPreorder(node *root) {
     if (root == NULL) {
+
     if (root != NULL) {
         return;
+
         printDataType(root->data);
    }
+
        printPreorder(root->left);
    printDataType(root->data);
+
        printPreorder(root->right);
    printPreorder(root->left);
+
  }
    printPreorder(root->right);
 
 
}
 
}
  
/* Vypise podstrom s korenom *root v poradi inorder */
+
/* Vypíše podstrom s koreňom *root v poradí inorder */
 
void printInorder(node *root) {
 
void printInorder(node *root) {
     if (root == NULL) {
+
     if (root != NULL) {
         return;
+
         printInorder(root->left);
 +
        printDataType(root->data);
 +
        printInorder(root->right);
 
     }
 
     }
    printInorder(root->left);
 
    printDataType(root->data);
 
    printInorder(root->right);
 
 
}
 
}
  
/* Vypise podstrom s korenom *root v poradi postorder */
+
/* Vypíše podstrom s koreňom *root v poradí postorder */
 
void printPostorder(node *root) {
 
void printPostorder(node *root) {
     if (root == NULL) {
+
     if (root != NULL) {
         return;
+
         printPostorder(root->left);
 +
        printPostorder(root->right);
 +
        printDataType(root->data);
 
     }
 
     }
    printPostorder(root->left);
 
    printPostorder(root->right);
 
    printDataType(root->data);
 
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>
Riadok 485: Riadok 488:
 
=== Výška binárneho stromu ===
 
=== Výška binárneho stromu ===
  
''Hĺbkou uzla'' binárneho stromu nazveme jeho vzdialenosť od koreňa. Koreň má teda hĺbku ''0'', jeho deti majú hĺbku ''1'', atď. ''Výškou binárneho stromu''  potom nazveme maximálnu hĺbku niektorého z jeho vrcholov. Strom s jediným vrcholom má teda hĺbku ''0''; pre ostatné stromy je ich výška daná ako 1 plus maximum z výšok ľavého a pravého podstromu.
+
* ''Hĺbkou uzla'' binárneho stromu nazveme jeho vzdialenosť od koreňa.  
 +
** Koreň má teda hĺbku ''0'', jeho deti majú hĺbku ''1'', atď.  
 +
* ''Výškou binárneho stromu''  potom nazveme maximálnu hĺbku niektorého z jeho vrcholov.  
 +
** Strom s jediným vrcholom má teda výšku ''0''; pre ostatné stromy je ich výška daná ako 1 plus maximum z výšok ľavého a pravého podstromu.
  
 
Nasledujúca funkcia počíta výšku stromu (kvôli elegancii zápisu pritom pracuje s rozšírením definície výšky stromu na prázdne stromy, za ktorých výšku sa považuje číslo ''-1'').
 
Nasledujúca funkcia počíta výšku stromu (kvôli elegancii zápisu pritom pracuje s rozšírením definície výšky stromu na prázdne stromy, za ktorých výšku sa považuje číslo ''-1'').
  
 
<syntaxhighlight lang="C++">
 
<syntaxhighlight lang="C++">
/* Spocita vysku podstromu s korenom *root. Pre root == NULL vrati -1. */
+
/* Spočíta výšku podstromu s koreňom *root. Pre root == NULL vráti -1. */
 
int height(node *root) {
 
int height(node *root) {
 
     if (root == NULL) {
 
     if (root == NULL) {
 
         return -1;
 
         return -1;
 
     }
 
     }
     // rekurzivne spocita vysku laveho a praveho podstromu
+
     // rekurzívne spočíta výšku ľavého a pravého podstromu
 
     int hLeft = height(root->left);     
 
     int hLeft = height(root->left);     
 
     int hRight = height(root->right);   
 
     int hRight = height(root->right);   
     // vrati max(hLeft, hRight) + 1
+
     // vráti max(hLeft, hRight) + 1
 
     if (hLeft >= hRight) {             
 
     if (hLeft >= hRight) {             
 
         return hLeft + 1;
 
         return hLeft + 1;
Riadok 534: Riadok 540:
 
         return NULL;
 
         return NULL;
 
     }
 
     }
     node *v = createNode(count++, NULL, NULL);
+
     node *v = createNode(count, NULL, NULL);
 +
    count++;
 
     v->left = createFullTree(height - 1);
 
     v->left = createFullTree(height - 1);
 
     v->right = createFullTree(height - 1);
 
     v->right = createFullTree(height - 1);
Riadok 575: Riadok 582:
  
 
struct treeNode {
 
struct treeNode {
     // ciselna hodnota (zmysluplna len v listoch)
+
     // číselná hodnota (len v listoch)
 
     double val;
 
     double val;
  
     // operator vo vnutornych uzloch, pre listy rovny medzere
+
     // operátor vo vnútorných uzloch, pre listy medzera
 
     char op;
 
     char op;
  
     // smernik na koren podstromu reprezentujuceho lavy podvyraz
+
     // smerníky na podstromy
    // alebo NULL v liste
+
     treeNode * left, * right;
     treeNode * left;
 
    // smernik na koren podstromu reprezentujuceho pravy podvyraz
 
    // alebo NULL v liste
 
    treeNode * right;
 
 
};
 
};
  
 +
/** Funkcia vráti nový uzol pre operátor */
 
treeNode * createOp(char op, treeNode * left, treeNode * right) {
 
treeNode * createOp(char op, treeNode * left, treeNode * right) {
 
     treeNode * v = new treeNode;
 
     treeNode * v = new treeNode;
Riadok 597: Riadok 601:
 
}
 
}
  
 +
/** Funkcia vráti nový uzol pre číslo */
 
treeNode * createNum(double val) {
 
treeNode * createNum(double val) {
 
     treeNode * v = new treeNode;
 
     treeNode * v = new treeNode;
Riadok 605: Riadok 610:
 
     return v;
 
     return v;
 
}
 
}
 
/** Štruktúra pre jednu súčasť výrazu: znamienko alebo číslo */
 
struct token {
 
    char op;    // znamienko alebo medzera, ak ide o číslo
 
    double val;  // číselná hodnota, ak je op medzera
 
};
 
 
/** Štruktúra pre postupnosť tokenov */
 
struct tokenSequence {
 
    token * items;  // pole tokenov
 
    int size;      // veľkosť alokovaného poľa
 
    int length;    // počet tokenov uložených v poli
 
};
 
 
/** Funkcia inicializuje prázdnu postupnosť tokenov
 
pričom alokuje pole požadovanej veľkosti. */
 
void init(tokenSequence & tokens, int size) {
 
    tokens.items = new token[size];
 
    tokens.size = size;
 
    tokens.length = 0;
 
}
 
 
/** Funkcia do postupnosti tokenov pridá nový token. */
 
void addToken(tokenSequence & tokens, token & newToken) {
 
    assert(tokens.length < tokens.size);
 
    tokens.items[tokens.length] = newToken;
 
    tokens.length++;
 
}
 
 
/** Funkcia odalokuje pamäť alokovanú pre postupnosť tokenov */
 
void destroy(tokenSequence & tokens) {
 
    delete[] tokens.items;
 
}
 
 
/** Funkcia konvertuje výraz z reťazca na postupnosť tokenov. */
 
void tokenize(char * str, tokenSequence & tokens) {
 
    init(tokens, strlen(str));  // inicializujeme prázdnu postupnosť
 
 
    int strPos = 0;  // pozícia v rámci reťazca
 
    while (str[strPos] != 0) {  // kým nie sme na konci str
 
        if (isspace(str[strPos])) {  // preskakujeme biele znaky
 
            strPos++;
 
        } else if (isdigit(str[strPos]) || str[strPos] == '.') {
 
            // keď nájdeme cifru alebo bodku (začiatok čísla)
 
            double val;
 
            int skip;
 
            // načítame toto číslo pomocou sscanf, do skip uložíme počet znakov čísla
 
            sscanf(&(str[strPos]), "%lf%n", &val, &skip);
 
            // vytvoríme a uložíme token
 
            token newToken = {' ', val};
 
            addToken(tokens, newToken);
 
            // preskočíme všetky znaky čísla
 
            strPos += skip;
 
        } else {
 
            // spracovanie zátvoriek alebo operátora
 
            assert(strchr("+-/*()~", str[strPos]) != NULL);
 
            // vytvoríme a uložíme token
 
            token newToken = {str[strPos], 0};
 
            addToken(tokens, newToken);
 
            strPos++;
 
        }
 
    }
 
}
 
 
  
  
Riadok 725: Riadok 666:
 
     }
 
     }
 
}
 
}
 
  
 
/** Funkcia konvertuje výraz v postfixovom tvare na strom */
 
/** Funkcia konvertuje výraz v postfixovom tvare na strom */
treeNode * postfixToTree(tokenSequence & tokens) {
+
treeNode * postfixToTree(char * str) {
 
     // zásobník, do ktorého ukladáme korene podstromov
 
     // zásobník, do ktorého ukladáme korene podstromov
 
     stack treeStack;
 
     stack treeStack;
 
     init(treeStack);
 
     init(treeStack);
  
     for (int i = 0; i < tokens.length; i++) {
+
     int strPos = 0; // pozícia v rámci reťazca
        // aktuálny token zo vstupu
+
    while (str[strPos] != 0) { // kým nie sme na konci str
         token curToken = tokens.items[i];
+
         if (isspace(str[strPos])) {  // preskakujeme biele znaky
         if (curToken.op == ' ') {
+
            strPos++;
             // čísla rovno ukladáme na zásobník
+
         } else if (isdigit(str[strPos]) || str[strPos] == '.') {
             push(treeStack, createNum(curToken.val));
+
             // keď nájdeme cifru alebo bodku (začiatok čísla)
 +
            double val;
 +
            int skip;
 +
            // načítame toto číslo pomocou sscanf,
 +
            // do skip uložíme počet znakov čísla
 +
            sscanf(&(str[strPos]), "%lf%n", &val, &skip);
 +
            // preskočíme všetky znaky čísla
 +
            strPos += skip;
 +
 
 +
            // vytvoríme list a uložíme na zásobník
 +
             push(treeStack, createNum(val));
 
         } else {
 
         } else {
 
             // spracovanie operátora
 
             // spracovanie operátora
 +
            assert(strchr("+-/*", str[strPos]) != NULL);
 
             treeNode * left, * right;
 
             treeNode * left, * right;
             // najskôr vyberieme 1 alebo 2 podstromy zo zásobníka
+
             // najskôr vyberieme 2 podstromy zo zásobníka
             // vytvoríme nový koreň, ktorý bude ich rodičom a vložíme na zásobník
+
             // vytvoríme nový koreň,
             if (curToken.op == '~') {
+
            // ktorý bude ich rodičom a vložíme na zásobník
                left = pop(treeStack);
+
             right = pop(treeStack);
                push(treeStack, createOp(curToken.op, left, NULL));
+
             left = pop(treeStack);
             } else {
+
            push(treeStack, createOp(str[strPos], left, right));
                right = pop(treeStack);
+
             strPos++;
                left = pop(treeStack);
 
                push(treeStack, createOp(curToken.op, left, right));
 
             }
 
 
         }
 
         }
 
     }
 
     }
Riadok 763: Riadok 711:
 
}
 
}
  
 +
/** Funkcia spočíta hodnotu výrazu reprezentovaného stromom */
 
double evaluateTree(treeNode * root) {
 
double evaluateTree(treeNode * root) {
 
     assert(root != NULL);
 
     assert(root != NULL);
Riadok 791: Riadok 740:
 
}
 
}
  
 +
/** Funkcia uvoľní pamäť daného stromu */
 
void destroyTree(treeNode * root) {
 
void destroyTree(treeNode * root) {
 
     if (root != NULL) {
 
     if (root != NULL) {
Riadok 799: Riadok 749:
 
}
 
}
  
void printInorder(FILE * fw, treeNode * root) {
+
/** Funkcia vypíše aritmetický výraz v inorder poradí */
 +
void printInorder(treeNode * root) {
 
     if (root->op == ' ') {
 
     if (root->op == ' ') {
         fprintf(fw, "%g", root->val);
+
         printf("%g", root->val);
 
     } else {
 
     } else {
         fprintf(fw, "(");
+
         printf("(");
         printInorder(fw, root->left);
+
         printInorder(root->left);
         fprintf(fw, " %c ", root->op);
+
         printf(" %c ", root->op);
         printInorder(fw, root->right);
+
         printInorder(root->right);
         fprintf(fw, ")");
+
         printf(")");
 
     }
 
     }
 
}
 
}
  
void printPreorder(FILE * fw, treeNode * root) {
+
/** Funkcia vypíše aritmetický výraz v preorder poradí */
 +
void printPreorder(treeNode * root) {
 
     if (root->op == ' ') {
 
     if (root->op == ' ') {
         fprintf(fw, "%g ", root->val);
+
         printf("%g ", root->val);
 
     } else {
 
     } else {
         fprintf(fw, "%c ", root->op);
+
         printf("%c ", root->op);
         printPreorder(fw, root->left);
+
         printPreorder(root->left);
         printPreorder(fw, root->right);
+
         printPreorder(root->right);
 
     }
 
     }
 
}
 
}
  
void printPostorder(FILE * fw, treeNode * root) {
+
/** Funkcia vypíše aritmetický výraz v postorder poradí */
 +
void printPostorder(treeNode * root) {
 
     if (root->op == ' ') {
 
     if (root->op == ' ') {
         fprintf(fw, "%g ", root->val);
+
         printf("%g ", root->val);
 
     } else {
 
     } else {
         printPostorder(fw, root->left);
+
         printPostorder(root->left);
         printPostorder(fw, root->right);
+
         printPostorder(root->right);
         fprintf(fw, "%c ", root->op);
+
         printf("%c ", root->op);
 
     }
 
     }
 
}
 
}
Riadok 833: Riadok 786:
  
 
int main() {
 
int main() {
 +
    // načítame postfixový výraz do reťazca
 
     const int maxLine = 100;
 
     const int maxLine = 100;
 
     char postfix[maxLine];
 
     char postfix[maxLine];
 
 
     fgets(postfix, maxLine, stdin);
 
     fgets(postfix, maxLine, stdin);
     tokenSequence tokens;
+
     // výraz konvertujeme na strom
    tokenize(postfix, tokens);
+
     treeNode * root = postfixToTree(postfix);
     treeNode * root = postfixToTree(tokens);
+
    // spočítame hodnotu výrazu
 
     double value = evaluateTree(root);
 
     double value = evaluateTree(root);
 
     printf(" value: %g\n", value);
 
     printf(" value: %g\n", value);
 +
    // vypíšeme vo všetkých troch notáciách
 
     printf(" inorder: ");
 
     printf(" inorder: ");
     printInorder(stdout, root);
+
     printInorder(root);
 
     printf("\n predorder: ");
 
     printf("\n predorder: ");
     printPreorder(stdout, root);
+
     printPreorder(root);
 
     printf("\n postdorder: ");
 
     printf("\n postdorder: ");
     printPostorder(stdout, root);
+
     printPostorder(root);
 
     printf("\n");
 
     printf("\n");
 
+
     // uvoľníme pamäť
     destroy(tokens);
 
 
     destroyTree(root);
 
     destroyTree(root);
 
}
 
}
 
</syntaxhighlight>
 
</syntaxhighlight>

Aktuálna revízia z 09:26, 3. december 2023

Oznamy

  • Oznamy z pondelka

Prednášky

  • Tento týždeň a budúci pondelok ešte prednášky v normálnom režime.
  • Budúcu stredu 6.12. v prvej polovici prednášky informácie k skúške a rady k skúškovému všeobecne, potom doberieme posledné povinné učivo.
  • Posledný týždeň semestra v pondelok 11.12. nepovinná prednáška o nepreberaných črtách jazykov C a C++, v stredu 13.12. prednáška pravdepodobne nebude.

Cvičenia a úlohy

  • Cvičenia bežia normálne každý utorok, piatkové cvičenia už iba 2x.
  • Ak ste na cvičení nezískali 5 bodov, sú pre vás povinné cvičenia v piatok. Dobrá príležitosť spýtať sa na nejasné veci v cvičeniach, prednáškach, domácej úlohe. Môžete aj trénovať prvý príklad zo skúšky alebo preriešiť si ukážkový test.
  • Budúci utorok bude teoretická rozcvička na papieri, bude zahŕňať učivo po prednášku 19.
  • Tretiu domácu úlohu treba odovzdať do budúceho utorka 5.12. 22:00.

Semestrálny test

  • V stredu 13.12. o 18:10.
  • Treba získať aspoň 50% bodov.
  • Opravný termín v januári.
  • Môžete si priniesť ťahák v rozsahu 1 listu A4.
  • Na semestrálnom teste budú podobné typy príkladov, aké poznáte z teoretických cvičení, napríklad napíšte funkciu, ktorá robí zadanú činnosť, doplňte chýbajúce časti funkcie, zistite, čo funkcia robí.
  • Vyskytnú sa ale aj príklady, kde je úlohou napísať, ako bude na nejakom vstupe fungovať algoritmus alebo dátová štruktúra z prednášky. Ukážky takýchto príkladov nájdete na stránke Zimný semester, semestrálny test
  • Môžete si pozrieť aj ukážkový test pre pokročilých, ktorý má podobné typy príkladov ako semestrálny test.

Termíny skúšok

  • Piatok 15.12. 13:10
  • Piatok 12.1. 9:00
  • Piatok 19.1. 9:00
  • Piatok 26.1. 9:00, hlavne 1. opravný termín
  • Piatok 9.2. 9:00, hlavne 2. opravný termín

Na termíny sa bude dať prihlasovať od dnes 20:00.

  • Kapacita termínov bude obmedzená, prihláste sa teda radšej skôr, neskôr to môžete zmeniť.
  • Hláste sa iba na jeden termín!
  • Ak vidíte konflikt niektorého termínu s hromadnou skúškou alebo písomkou z iného predmetu, dajte mi prosím vedieť čím skôr.
  • Decembrový termín odporúčame hlavne študentom, ktorým programovanie nerobí problémy.
  • Viac informácií o skúške je na stránke Zimný semester, skúška, spolu cez to prejdeme budúcu stredu.
  • Na testovači dnes po prednáške pribudne zopár tréningových príkladov na skúšku, všetky sa týkajú už prebraného učiva. Ďalšie dva tréningové príklady pridáme neskôr.

Opakovanie z minulej prednášky

Aritmetické výrazy

  • Bežná infixová notácia, napr. (65 – 3*5)/(2 + 3)
  • Postfixová notácia 65 3 5 * - 2 3 + /
  • Prefixová notácia / - 65 * 3 5 + 2 3
  • Prefixová a postfixová notácia nepotrebujú zátvorky
  • Prevod z infixovej notácie na postfixovú pomocou zásobníka
    • Čo si ukladáme do zásobníka?
  • Vyhodnocovanie postfixovej notácie pomocou zásobníka
    • Čo si ukladáme do zásobníka?

Aritmetický výraz ako strom

Strom pre výraz (65 – 3 * 5)/(2 + 3)

Aritmetické výrazy možno reprezentovať aj vo forme stromu

  • Operátory a čísla tvoria tzv. uzly (alebo vrcholy) stromu.
  • Operátory tvoria tzv. vnútorné uzly stromu, každý z nich má dve deti zodpovedajúce podvýrazom pre jednotlivé operandy.
    • Pre jednoduchosť na dnešnej prednáške neuvažujeme unárne mínus, dalo by sa však ľahko dorobiť.
  • Čísla tvoria tzv. listy stromu, tie už nemajú žiadne deti.
  • Strom obsahuje jediný uzol, ktorý nemá rodiča. Tento sa nazýva koreň stromu a reprezentuje celý aritmetický výraz.
  • Informatici stromy väčšinou kreslia „hore nohami”, s koreňom na vrchu.

Uzol takéhoto stromu tak môžeme reprezentovať napríklad nasledujúcou štruktúrou:

struct treeNode {
    // číselná hodnota (len v listoch)
    double val;

    // operátor vo vnútorných uzloch, pre listy medzera
    char op;

    // smerníky na podstromy
    treeNode * left, * right;
};

Pre vnútorné uzly stromu (zodpovedajúce operátorom) pritom:

  • Smerníky left a right budú ukazovať na korene podstromov reprezentujúcich ľavý resp. pravý podvýraz.
  • Znak op bude zodpovedať danému operátoru (napríklad '+').
  • Hodnota val ostane nevyužitá.

Pre listy (zodpovedajúce číselným hodnotám) naopak:

  • Smerníky left a right budú mať hodnotu NULL.
  • Znak op bude medzera ' ' (podľa op teda môžeme rozlišovať, či ide o číslo alebo o operátor).
  • Vo val bude uložená hodnota daného čísla.

Celý strom pritom budeme reprezentovať jeho koreňom.

V tejto reprezentácii sú niektoré položky štruktúry treeNode nevyužité (napr. val vo vnútorných vrcholoch). S využitím objektového programovania (letný semester) budeme vedieť stromy pre aritmetické výrazy reprezentovať elegantnejšie.

Vytvorenie uzlu

Nasledujúce funkcie vytvoria nový vnútorný uzol (pre operátor) resp. nový list (pre číslo):

treeNode *createOp(char op, treeNode *left, treeNode *right) {
    treeNode *v = new treeNode;
    v->left = left;
    v->right = right;
    v->op = op;
    return v; 
}

treeNode *createNum(double val) {
    treeNode *v = new treeNode;
    v->left = NULL;
    v->right = NULL;
    v->op = ' ';
    v->val = val;
    return v;
}

„Ručne” teraz môžeme vytvoriť strom pre výraz (65 – 3 * 5)/(2 + 3):

treeNode *root = createOp('/', 
                   createOp('-', 
                     createNum(65),
                     createOp('*', createNum(3), createNum(5))),
                   createOp('+', createNum(2), createNum(3)));

Alebo po častiach:

treeNode *v65 = createNum(65);
treeNode *v3 = createNum(3);
treeNode *v5 = createNum(5);
treeNode *v2 = createNum(2);
treeNode *v3b = createNum(3);
treeNode *vKrat = createOp('*', v3, v5);
treeNode *vMinus = createOp('-', v65, vKrat);
treeNode *vPlus = createOp('+', v2, v3b);
treeNode *vDeleno = createOp('/', vMinus, vPlus);

Vyhodnotenie výrazu reprezentovaného stromom

Nasledujúca rekurzívna funkcia vypočíta hodnotu aritmetického výrazu reprezentovaného stromom s koreňom root.

  • Ak je zadaný vrchol listom, vrátime hodnotu uloženú v položke val.
  • V opačnom prípade rekurzívne spočítame hodnoty pre obidva podvýrazy a skombinujeme ich podľa typu znamienka.
  • Celkovo veľmi jednoduchý a prirodzený výpočet, nie je potrebný explicitný zásobník.
  • Funkcia nižšie nefunguje pre unárne mínus, nebolo by však ťažké ho dorobiť.

Rekurziu budeme používať vždy, keď potrebujeme prejsť všetky uzly stromu. Cyklom sa to programuje ťažko, lebo z uzla potrebujeme ísť doľava aj doprava.

double evaluateTree(treeNode *root) {
    assert(root != NULL);
    if (root->op == ' ') {
        return root->val;
    } else {
        double valLeft = evaluateTree(root->left);
        double valRight = evaluateTree(root->right);
        switch (root->op) {
            case '+':
                return valLeft + valRight;
                break;
            case '-':
                return valLeft - valRight;
                break;
            case '*':
                return valLeft * valRight;
                break;
            case '/':
                return valLeft / valRight;
                break;
            default:
                assert(false);
                break;
        }
    }
    return 0; // realne nedosiahnutelny prikaz
}

Uvoľnenie pamäte

Nasledujúca funkcia uvoľní z pamäte celý strom s koreňom root.

  • Opäť používa rekurziu na prejdenie celého stromu.
  • Pozor na poradie príkazov, treba najskôr uvoľniť podstromy až potom zavolať delete na root, inak by sme stratili prístup k deťom.
  • Všimnite si, ako sú riešené triviálne prípady, funkcia ani nezisťuje, s akým typom uzla pracuje.
void destroyTree(treeNode *root) {
    if (root != NULL) {
        destroyTree(root->left);
        destroyTree(root->right);
        delete root;
    }
}

Vypísanie výrazu reprezentovaného stromom v rôznych notáciách

Infixovú, prefixovú, resp. postfixovú reprezentáciu aritmetického výrazu reprezentovaného stromom s koreňom root možno získať pomocou nasledujúcich funkcií.

  • Opäť používajú rekurziu na prejdenie celého stromu.
  • Líšia sa hlavne umiestnením príkazu na vypísanie operátora (pred, medzi alebo za rekurzívnym vypísaním podvýrazov).
  • Infixová notácia potrebuje aj zátvorky. Táto funkcia ich pre istotu dáva všade. Rozmyslite si, ako by sme ich vedeli vypísať iba tam, kde treba.
  • Ako by sme funkcie rozšírili pre unárne mínus?
/** Funkcia vypíše aritmetický výraz v inorder poradí */
void printInorder(treeNode * root) {
    if (root->op == ' ') {
        printf("%g", root->val);
    } else {
        printf("(");
        printInorder(root->left);
        printf(" %c ", root->op);
        printInorder(root->right);
        printf(")");
    }
}

/** Funkcia vypíše aritmetický výraz v preorder poradí */
void printPreorder(treeNode * root) {
    if (root->op == ' ') {
        printf("%g ", root->val);
    } else {
        printf("%c ", root->op);
        printPreorder(root->left);
        printPreorder(root->right);
    }
}

/** Funkcia vypíše aritmetický výraz v postorder poradí */
void printPostorder(treeNode * root) {
    if (root->op == ' ') {
        printf("%g ", root->val);
    } else {
        printPostorder(root->left);
        printPostorder(root->right);
        printf("%c ", root->op);
    }
}

Vytvorenie stromu z postfixového výrazu

Pripomeňme si z minulej prednášky funkciu na vyhodnocovanie postfixového výrazu:

/** Funkcia vyhodnotí a vráti hodnotou výrazu v postfixovom tvare. */
double evaluatePostfix(tokenSequence & tokens) {
    // zásobník, do ktorého ukladáme čísla
    stack numberStack;
    init(numberStack);

    for (int i = 0; i < tokens.length; i++) {
        // aktuálny token zo vstupu
        token curToken = tokens.items[i];
        if (curToken.op == ' ') {
            // čísla rovno ukladáme na zásobník
            push(numberStack, curToken);
        } else {
            // spracovanie operátora
            token num1, num2, result;
            // najskôr vyberieme 1 alebo 2 čísla zo zásobníka
            if (curToken.op == '~') {
                num1 = pop(numberStack);
            } else {
                num2 = pop(numberStack);
                num1 = pop(numberStack);
            }
            // na operandy aplikujeme operátor
            applyOp(curToken, num1, num2, result);
            // výsledné číslo uložíme na zásobník
            push(numberStack, result);
        }
    }
    // zo zásobníka vyberieme výsledné číslo
    token result = pop(numberStack);
    // skontrolujeme, že zásobník je prázdny a výsledok je číslo
    assert(isEmpty(numberStack) && result.op == ' ');
    // uvoľníme pamäť zásobníka
    destroy(numberStack);
    return result.val;
}


  • Túto funkciu možno jednoducho prepísať tak, aby namiesto vyhodnocovania výrazu konštruovala zodpovedajúci aritmetický strom.
  • Namiesto hodnôt jednotlivých podvýrazov stačí na zásobníku uchovávať korene stromov, ktoré tieto podvýrazy reprezentujú.
  • Aplikácii aritmetickej operácie bude zodpovedať spojenie dvoch podstromov do jedného stromu.
  • V tomto prípade nepoužívame postupnosť symbolov (tokenov), ale priamo spracovávame postfixový výraz vo forme reťazca.
typedef treeNode *dataType;


/* Sem príde definícia štruktúry pre zásobník a všetkých funkcií poskytovaných zásobníkom. */
treeNode * postfixToTree(char * str) {
    // zásobník, do ktorého ukladáme korene podstromov
    stack treeStack;
    init(treeStack);

    int strPos = 0;  // pozícia v rámci reťazca
    while (str[strPos] != 0) {  // kým nie sme na konci str
        if (isspace(str[strPos])) {  // preskakujeme biele znaky
            strPos++;
        } else if (isdigit(str[strPos]) || str[strPos] == '.') {
            // keď nájdeme cifru alebo bodku (začiatok čísla)
            double val;
            int skip;
            // načítame toto číslo pomocou sscanf,
            // do skip uložíme počet znakov čísla
            sscanf(&(str[strPos]), "%lf%n", &val, &skip);
            // preskočíme všetky znaky čísla
            strPos += skip;

            // vytvoríme list a uložíme na zásobník
            push(treeStack, createNum(val));
        } else {
            // spracovanie operátora
            assert(strchr("+-/*", str[strPos]) != NULL);
            treeNode * left, * right;
            // najskôr vyberieme 2 podstromy zo zásobníka
            // vytvoríme nový koreň,
            // ktorý bude ich rodičom a vložíme na zásobník
            right = pop(treeStack);
            left = pop(treeStack);
            push(treeStack, createOp(str[strPos], left, right));
            strPos++;
        }
    }
    // zo zásobníka vyberieme výsledný strom
    treeNode * result = pop(treeStack);
    // skontrolujeme, že zásobník je prázdny
    assert(isEmpty(treeStack));
    // uvoľníme pamäť zásobníka
    destroy(treeStack);
    return result;
}

Ukážkový program pracujúci so stromami pre aritmetické výrazy

Nasledujúci program prečíta z konzoly aritmetický výraz v postfixovom tvare, skonštruuje jeho aritmetický strom a následne preň zavolá funkcie na výpočet hodnoty výrazu a jeho výpis v rôznych notáciách. Celý program je na konci prednášky.

int main() {
    // načítame postfixový výraz do reťazca
    const int maxLine = 100;
    char postfix[maxLine];
    fgets(postfix, maxLine, stdin);
    // výraz konvertujeme na strom
    treeNode * root = postfixToTree(postfix);
    // spočítame hodnotu výrazu
    double value = evaluateTree(root);
    printf(" value: %g\n", value);
    // vypíšeme vo všetkých troch notáciách
    printf(" inorder: ");
    printInorder(stdout, root);
    printf("\n predorder: ");
    printPreorder(stdout, root);
    printf("\n postdorder: ");
    printPostorder(stdout, root);
    printf("\n");
    // uvoľníme pamäť
    destroyTree(root);
}

Binárne stromy

Stromy pre aritmetické výrazy sú špeciálnym prípadom binárnych stromov. V informatike majú binárne stromy množstvo rozličných uplatnení. Ukážeme si teda všeobecnú dátovú štruktúru binárneho stromu.

Terminológia stromov

  • Strom obsahuje množinu uzlov alebo vrcholov prepojených hranami. (uzol angl. node, vrchol vertex, hrana edge).
  • Ak je strom neprázdny, jeden jeho vrchol nazývame koreň (angl. root)
  • Každý uzol u okrem koreňa je spojený hranou s práve jedným rodičom (angl. parent), ktorým je nejaký uzol v. Naopak uzol u je dieťaťom (angl. child) uzla v.
  • Vo všeobecnom strome môže mať každý uzol ľubovoľný počet detí (aj nula).
  • Strom je binárny, ak má každý uzol najviac dve deti. Budeme pritom rozlišovať medzi pravým a ľavým dieťaťom.
  • Uzly zakoreneného stromu, ktoré nemajú žiadne dieťa, nazývame listami; zvyšné uzly nazývame vnútornými uzlami.
  • Predkom uzla u nazveme ľubovoľný uzol v ležiaci na ceste z u do koreňa stromu (vrátane u a koreňa). Naopak potom hovoríme, že u je potomkom uzla v.
  • Podstromom stromu T zakoreneným v nejakom uzle v stromu T budeme rozumieť strom s koreňom v pozostávajúci zo všetkých jeho potomkov a všetkých hrán stromu T vedúcich medzi týmito uzlami.

Každý binárny strom je teda buď prázdny, alebo je tvorený jeho koreňom a dvoma podstromami – ľavým a pravým.


Takéto stromy sa nazývajú zakorenené. Presnejšiu matematickú definíciu zakorenených aj nezakorenených stromov uvidíte na predmete Úvod do kombinatoriky a teórie grafov (letný semester).

Štruktúra pre uzol binárneho stromu

V nasledujúcom budeme pracovať výhradne s binárnymi stromami. Štruktúra pre uzol všeobecného binárneho stromu je podobná, ako pri stromoch pre aritmetické výrazy, namiesto operátora alebo hodnoty si však v každom uzle budeme pamätať hodnotu ľubovoľného typu dataType, napríklad int.

/* Typ prvkov ukladaných v uzloch binárneho stromu */
typedef int dataType;          

/* Uzol binárneho stromu */
struct node {
    // hodnota uložená v uzle
    dataType data;  

    // smerníky na podstromy
    treeNode * left, * right;
};

Vytvorenie binárneho stromu

Nasledujúca funkcia vytvorí uzol binárneho stromu s dátami data, ľavým podstromom zakoreneným v uzle *left a pravým podstromom zakoreneným v uzle *right (parametre left a right sú teda smerníkmi na uzly). Ako výstup funkcia vráti smerník na novovytvorený uzol.

/* Vytvori uzol binarneho stromu */
node *createNode(dataType data, node *left, node *right) {
    node *v = new node;
    v->data = data;
    v->left = left;
    v->right = right;
    return v;
}

Nasledujúca volanie tak napríklad vytvorí binárny strom so šiestimi uzlami zakorenený v uzle *root.

node *root = createNode(1,
                   createNode(2, 
                     createNode(3, NULL, NULL),
                     createNode(4,NULL,NULL)),
                   createNode(5,
                     NULL, 
                     createNode(6, NULL, NULL)));

Cvičenie: nakreslite binárny strom vytvorený predchádzajúcim volaním.

Prehľadávanie stromov a vypisovanie ich uzlov

Často je potrebné prejsť celý strom a spracovať (napríklad vypísať) hodnoty vo všetkých uzloch. Toto prehľadávanie možno, podobne ako pri stromoch pre výrazy, realizovať v troch základných poradiach: preorder, inorder a postorder.

Pri vypisovaní predpokladáme, že pre hodnoty typu dataType máme k dispozícii funkciu printDataType, ktorá ich v nejakom vhodnom formáte vypisuje.


/* Funkcia pre výpis hodnoty typu dataType */
void printDataType(dataType data) {
    printf("%d ", data);  // pre int
}

/* Vypíše podstrom s koreňom *root v poradí preorder */
void printPreorder(node *root) {
    if (root != NULL) {
        printDataType(root->data);
        printPreorder(root->left);
        printPreorder(root->right);
   } 
}

/* Vypíše podstrom s koreňom *root v poradí inorder */
void printInorder(node *root) {
    if (root != NULL) {
        printInorder(root->left);
        printDataType(root->data);
        printInorder(root->right);
    }
}

/* Vypíše podstrom s koreňom *root v poradí postorder */
void printPostorder(node *root) {
    if (root != NULL) {
        printPostorder(root->left);
        printPostorder(root->right);
        printDataType(root->data);
    }
}

Cvičenie: ako by sme spočítali súčet hodnôt uložených v uzloch stromu?

Likvidácia binárneho stromu

Nasledujúca rekurzívna funkcia zlikviduje celý podstrom zakorenený v uzle *root (t. j. uvoľní pamäť pre všetky jeho uzly). Veľmi sa podobá na funkciu pre strom reprezentujúci aritmetický výraz.

/* Zlikviduje podstrom s korenom *root (uvolni pamat) */
void destroyTree(node *root) {
    if (root != NULL) {
        destroyTree(root->left);
        destroyTree(root->right);
        delete root;
    }
}

Výška binárneho stromu

  • Hĺbkou uzla binárneho stromu nazveme jeho vzdialenosť od koreňa.
    • Koreň má teda hĺbku 0, jeho deti majú hĺbku 1, atď.
  • Výškou binárneho stromu potom nazveme maximálnu hĺbku niektorého z jeho vrcholov.
    • Strom s jediným vrcholom má teda výšku 0; pre ostatné stromy je ich výška daná ako 1 plus maximum z výšok ľavého a pravého podstromu.

Nasledujúca funkcia počíta výšku stromu (kvôli elegancii zápisu pritom pracuje s rozšírením definície výšky stromu na prázdne stromy, za ktorých výšku sa považuje číslo -1).

/* Spočíta výšku podstromu s koreňom *root. Pre root == NULL vráti -1. */
int height(node *root) {
    if (root == NULL) {
        return -1;
    }
    // rekurzívne spočíta výšku ľavého a pravého podstromu
    int hLeft = height(root->left);    
    int hRight = height(root->right);  
    // vráti max(hLeft, hRight) + 1
    if (hLeft >= hRight) {             
        return hLeft + 1;
    } else {
        return hRight + 1;
    }
}

Cvičenie: prepíšte funkciu tak, aby triviálnym prípadom bol list, nie prázdny strom. Funkcia teda vždy dostane smerník na neprázdny strom a nebude volať rekurziu na prázdne podstromy. Ktorá verzia je jednoduchšia? Ktorá sa vám zdá jednoduchšia na pochopenie?

Aká môže byť výška binárneho stromu?

Pre výšku h binárneho stromu s n uzlami platia nasledujúce vzťahy:

  • Určite h ≤ n-1. Tento prípad nastáva, ak sú všetky uzly „navešané jeden pod druhý”.
  • Strom s výškou h má najviac
Formula.png
uzlov (ako možno ľahko dokázať indukciou vzhľadom na h).
  • Z toho h ≥ log2(n+1)-1.
  • Dostávame teda log2(n+1)-1 ≤ h ≤ n-1.
  • Napríklad strom s milión vrcholmi má teda hĺbku medzi 19 a 999999.

Príklad: plné binárne stromy

Binárny strom výšky h s maximálnym počtom vrcholov 2h+1-1 sa nazýva plný binárny strom. Nasledujúca funkcia createFullTree vytvorí takýto strom a vráti smerník na jeho koreň. Jeho uzly pritom očísľuje 1, 2, 3,... (predpokladáme, že dataType je int) pomocou globálnej premennej count.

// ...

int count;

/* Vytvori plny binarny strom vysky height s datami uzlov count, count + 1, ... */ 
node *createFullTree(int height) {    
    if (height == -1) {
        return NULL;
    }
    node *v = createNode(count, NULL, NULL);
    count++;
    v->left = createFullTree(height - 1);
    v->right = createFullTree(height - 1);
    return v;
}

int main() {
    count = 1;
    node *root = createFullTree(3);
                     
    printf("Vyska: %d\n", height(root));                 
    printf("Inorder: ");
    printInorder(root);
    printf("\n");
    printf("Preorder: ");
    printPreorder(root);
    printf("\n");
    printf("Postorder: ");
    printPostorder(root);
    printf("\n");
                     
    destroyTree(root);
}

Cvičenie:

  • Nakreslite strom aj s hodnotami v uzloch, ktorý vznikne pre výšku 2.
  • Vo všeobecnosti opíšte poradie, v ktorom sa v uvedenom programe jednotlivým uzlom priraďujú ich hodnoty.
  • Ako by ste v programe odstránili globálnu premennú count?


Program pre aritmetické výrazy ako stromy

#include <cstdio>
#include <cctype>
#include <cassert>
#include <cstring>
using namespace std;

struct treeNode {
    // číselná hodnota (len v listoch)
    double val;

    // operátor vo vnútorných uzloch, pre listy medzera
    char op;

    // smerníky na podstromy
    treeNode * left, * right;
};

/** Funkcia vráti nový uzol pre operátor */
treeNode * createOp(char op, treeNode * left, treeNode * right) {
    treeNode * v = new treeNode;
    v->left = left;
    v->right = right;
    v->op = op;
    return v;
}

/** Funkcia vráti nový uzol pre číslo */
treeNode * createNum(double val) {
    treeNode * v = new treeNode;
    v->left = NULL;
    v->right = NULL;
    v->op = ' ';
    v->val = val;
    return v;
}


// Nasleduje kód pre zásobník uzlov stromu
typedef treeNode * dataType;

/** Uzol spájaného zoznamu pre zásobník */
struct node {
    dataType data; // dáta uložené v uzle
    node * next;   // smerník na ďalší uzol zoznamu
};

/** Štruktúra pre zásobník implementovaný pomocou zoznamu*/
struct stack {
    node * top; // Smernik na vrch zasobníka  alebo NULL
};

/** Funkcia inicializuje prázdny zásobník */
void init(stack & s) {
    s.top = NULL;
}

/** Funkcia zistí, či je zásobník prázdny */
bool isEmpty(stack & s) {
    return s.top == NULL;
}

/** Funkcia pridá prvok item na vrch zásobníka */
void push(stack & s, dataType item) {
    node * tmp = new node;
    tmp->data = item;
    tmp->next = s.top;
    s.top = tmp;
}

/** Funkcia odoberie prvok z vrchu zasobnika a vráti ho */
dataType pop(stack & s) {
    assert(!isEmpty(s));
    dataType result = s.top->data;
    node * tmp = s.top->next;
    delete s.top;
    s.top = tmp;
    return result;
}

/** Funkcia vráti prvok na vrchu zásobníka, ale nechá ho v zásobníku */
dataType peek(stack & s) {
    assert(!isEmpty(s));
    return s.top->data;
}

/** Funkcia uvoľní pamäť zásobníka */
void destroy(stack & s) {
    while (!isEmpty(s)) {
        pop(s);
    }
}

/** Funkcia konvertuje výraz v postfixovom tvare na strom */
treeNode * postfixToTree(char * str) {
    // zásobník, do ktorého ukladáme korene podstromov
    stack treeStack;
    init(treeStack);

    int strPos = 0;  // pozícia v rámci reťazca
    while (str[strPos] != 0) {  // kým nie sme na konci str
        if (isspace(str[strPos])) {  // preskakujeme biele znaky
            strPos++;
        } else if (isdigit(str[strPos]) || str[strPos] == '.') {
            // keď nájdeme cifru alebo bodku (začiatok čísla)
            double val;
            int skip;
            // načítame toto číslo pomocou sscanf,
            // do skip uložíme počet znakov čísla
            sscanf(&(str[strPos]), "%lf%n", &val, &skip);
            // preskočíme všetky znaky čísla
            strPos += skip;

            // vytvoríme list a uložíme na zásobník
            push(treeStack, createNum(val));
        } else {
            // spracovanie operátora
            assert(strchr("+-/*", str[strPos]) != NULL);
            treeNode * left, * right;
            // najskôr vyberieme 2 podstromy zo zásobníka
            // vytvoríme nový koreň,
            // ktorý bude ich rodičom a vložíme na zásobník
            right = pop(treeStack);
            left = pop(treeStack);
            push(treeStack, createOp(str[strPos], left, right));
            strPos++;
        }
    }
    // zo zásobníka vyberieme výsledný strom
    treeNode * result = pop(treeStack);
    // skontrolujeme, že zásobník je prázdny
    assert(isEmpty(treeStack));
    // uvoľníme pamäť zásobníka
    destroy(treeStack);
    return result;
}

/** Funkcia spočíta hodnotu výrazu reprezentovaného stromom */
double evaluateTree(treeNode * root) {
    assert(root != NULL);
    if (root->op == ' ') {
        return root->val;
    } else {
        double valLeft = evaluateTree(root->left);
        double valRight = evaluateTree(root->right);
        switch (root->op) {
        case '+':
            return valLeft + valRight;
            break;
        case '-':
            return valLeft - valRight;
            break;
        case '*':
            return valLeft * valRight;
            break;
        case '/':
            return valLeft / valRight;
            break;
        default:
            assert(false);
            break;
        }
    }
    return 0; // realne nedosiahnutelny prikaz
}

/** Funkcia uvoľní pamäť daného stromu */
void destroyTree(treeNode * root) {
    if (root != NULL) {
        destroyTree(root->left);
        destroyTree(root->right);
        delete root;
    }
}

/** Funkcia vypíše aritmetický výraz v inorder poradí */
void printInorder(treeNode * root) {
    if (root->op == ' ') {
        printf("%g", root->val);
    } else {
        printf("(");
        printInorder(root->left);
        printf(" %c ", root->op);
        printInorder(root->right);
        printf(")");
    }
}

/** Funkcia vypíše aritmetický výraz v preorder poradí */
void printPreorder(treeNode * root) {
    if (root->op == ' ') {
        printf("%g ", root->val);
    } else {
        printf("%c ", root->op);
        printPreorder(root->left);
        printPreorder(root->right);
    }
}

/** Funkcia vypíše aritmetický výraz v postorder poradí */
void printPostorder(treeNode * root) {
    if (root->op == ' ') {
        printf("%g ", root->val);
    } else {
        printPostorder(root->left);
        printPostorder(root->right);
        printf("%c ", root->op);
    }
}


int main() {
    // načítame postfixový výraz do reťazca
    const int maxLine = 100;
    char postfix[maxLine];
    fgets(postfix, maxLine, stdin);
    // výraz konvertujeme na strom
    treeNode * root = postfixToTree(postfix);
    // spočítame hodnotu výrazu
    double value = evaluateTree(root);
    printf(" value: %g\n", value);
    // vypíšeme vo všetkých troch notáciách
    printf(" inorder: ");
    printInorder(root);
    printf("\n predorder: ");
    printPreorder(root);
    printf("\n postdorder: ");
    printPostorder(root);
    printf("\n");
    // uvoľníme pamäť
    destroyTree(root);
}