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Abstract 

Kozen, D. and S. Zaks, Optimal bounds for the change-making problem, Theoretical Computer 

Science 123 (1994) 3777388. 

The change-making problem is the problem of representing a given value with the fewest coins possible. 

We investigate the problem of determining whether the greedy algorithm produces an optimal 

representation of all amounts for a given set of coin denominations 1 =ci cc2 < ... cc,,,. Chang and 

Gill (1970) show that if the greedy algorithm is not always optimal, then there exists a counter- 

example x in the range 

C,QX< 
c&,c,-1+c,--c,~,) 

G--cm-1 

To test for the existence of such a counterexample, Chang and Gill propose computing and 

comparing the greedy and optimal representations of all x in this range. 

In this paper we show that if a counterexample exists, then the smallest one lies in the range 

c,+l <x<c,+c,_,, 

Correspondence to: D. Kozen, Computer Science Department, Cornell University, Ithaca, NY 14853, USA 

Email addresses of the authors: kozen@cs.cornell.edu and zaks@cs.technion.ac.il. 

*Supported by the Danish Research Academy, the National Science Foundation, the John Simon 
Guggenheim Foundation, and the US Army Research Office through the ACSyAM branch of the 
Mathematical Sciences Institute of Cornell University under contract DAAL03-91-C-0027. Research done 

while on sabbatical at the Computer Science Department, Aarhus University, Aarhus, Denmark. 
**Supported by the ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 

(project ALCOM). 

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved 

SSDI 0304-3975(93)E0074-E 



378 D. Kozen, S. Zaks 

and these bounds are tight. Moreover, we give a simple test for the existence of a counterexample 

that does not require the calculation of optimal representations. 

In addition, we give a complete characterization of three-coin systems and an efficient algorithm 

for all systems with a fixed number of coins. Finally, we show that a related problem is co- 

NP-complete. 

1. Introduction 

The change-making problem is the problem of representing a given value with the 

fewest coins possible from a given set of coin denominations. Unboundedly many 

coins of each denomination are available. 

Formally, given a finite system c1 < c2 < . . . <c,,,=n of positive integers (the coins) 

and a positive integer x, we wish to determine nonnegative integer coefficients xi, 

1 <i<m, so as to minimize 

subject to 

Xc 5 XiCj. (2) 
i=l 

The sequence of coefficients x1, . . . , x, is called a representation of x. The quantity (1) 

that we wish to minimize is called the size of the representation. A representation is 

optimal if it is of minimum size. If Xi>O, then we say that the coin ci is used in the 

representation. We restrict our attention here to systems containing a penny (i.e. 

c1 = l), so that every x has a representation. 

The change-making problem is a form of knapsack problem. Martello and Toth [4] 

devote an entire chapter to it in their text on knapsack problems, and a good 

summary of the state of knowledge can be found there. In general, the problem is 

NP-complete when the coin values are large and represented in binary [3]; however, it 

can be solved in time polynomial in the number of coins and the value of the largest 

coin. In this regard, a number of algorithms have been investigated, the simplest of 

which is the greedy algorithm, which repeatedly takes the largest coin less than or 

equal to the amount remaining. Equivalently and more efficiently, for each of 

i=m,m-1 , . . . ,2,1 in that order, let Xi be the integer quotient Lx/ci J, and set 

x :=xmodc;. This produces the greedy representation in time O(mlogn). Note that 

this is the unique representation x1, . . . , x, such that for all i, 1~ i<m, 

(3) 

The greedy representation is not necessarily optimal. For example, given the system 

1,3,4, the greedy algorithm produces the representation 2,0,1 for the number 6; this 
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representation is of size 3, whereas the optimal representation is 0,2,0 of size 2. For 

some systems, however, the greedy algorithm always produces an optimal representa- 

tion for any given value; as a matter of practical interest, we note that this is the case 

for the system 1,5,10,25,50,100 of American coins and the system 1,5,10,50,100,500 

of Israeli coins. The question thus arises: how does one determine whether the greedy 

algorithm is always optimal for a given system? 

Definition 1.1. Given a system of coins, let M(x) denote the minimum size over all 

representations of the number x in that system, and let G(x) denote the size of the 

greedy representation of x. Following [4], we call the system canonical if G(x) = M(x) 

for all x. If a system is not canonical, then a value x for which M(x) < G(x) is called 

a counterexample for the system. 

Example 1.2. For any nonnegative integer k, the system 1,2,4, . . . , 2k is canonical. The 

Fibonacci system 1,2,3,5,8, . , Fk is canonical, where Fk is the kth Fibonacci number. 

The system 1, k, k+ 1 for k>2 is not canonical: the counterexample 2k has optimal 

representation 0,2,0 of size 2, whereas the greedy representation is k- 1, 0,l of size k. 

Chang and Gill [l] show that it suffices to search for a counterexample among the 

members of a certain finite set; if no counterexample is found in this set, then no 

counterexample exists and the system is canonical. The size of the set to be checked is 

polynomial in the largest coin value. Specifically, we have the following theorem. 

Theorem 1.3 (Chang and Gill Cl]). Let 1 =cl < ... cc,,, be any system of coins. Zf 

M(x) = G(x) for all x in the range 

c,<x< Gn(cmcm-1+cm-3cm-1) 
1 

cnl-G-1 
(4) 

then the system is canonical. 

In order to check for a counterexample in this set, Chang and Gill propose 

computing the greedy and optimal representations of each element of the set and 

comparing their sizes. Martello and Toth [4, p. 1421 comment: 

The proof [of Theorem 1.31 is quite involved and will not be reported here. 

Furthermore, application of the theorem is very onerous, calling for optimality 

testing of a usually high number of greedy solutions. 

Example 1.4. Consider the system 1,2,4,8,10,16 (this example is taken from [4, 

Example 5.2, p. 1431). In order to test whether this system is canonical according to 

the algorithm of Chang and Gill, we must compute and compare the sizes of the 

greedy and optimal representations of all 385 values of x in the range (4). 
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In Section 2 we give two results that simplify the process of testing for the existence 

of a counterexample: 

l We give tight bounds for Theorem 1.3. Specifically, we show that if a counter- 

example exists at all, then the smallest one lies in the range 

c3fl<x<c,+c,-1, 

and these bounds are tight for an infinity of systems. Note that the upper bound is 

linear in the largest coin value, whereas (4) is cubic. Thus, in order to check the 

system of Example 1.4, we need only check a set of size 20. 

l We show that it is not necessary to compute optimal representations for the 

numbers in the given range as suggested by Chang and Gill. There is a much 

simpler test involving only the sizes of the greedy representations, which are trivial 

to compute in time O(n) using the recurrence 

G(x)=l+G(x-c), (5) 

where c is the largest coin value less than or equal to x. 

These results give rise to an O(mn) algorithm for testing whether a given system of 

coins is canonical. 

In Section 3 we give a characterization of systems of three coins and a simple 

O(log n) test for determining when such a system is canonical. 

In Section 4 we extend these results to systems with any fixed number of coins. 

In Section 5 we consider the related problem of determining whether the greedy 

representation of a given number x in a given system is optimal. We show that this 

problem is co-NP-complete. It remains open whether there is an algorithm that is 

polynomial in m and log n for testing whether a given system is canonical. 

2. Optimal bounds 

In this section we derive optimal bounds for the change-making problem. Many of 

our arguments hinge on the following lemma, which describes the behavior of the 

function M. 

Lemma 2.1. Let 1 =cl < ... <c, be any system of coins. For all x and coins ci<x, 

with equality holding fund only if there exists an optimal representation of x that uses 
the coin ci. 

Proof. Certainly (6) holds, since any optimal representation of x--c; gives a repres- 

entation of x of size M(x - ci) + 1 by adding one to the coefficient of ci. If in addition 

M(x) = M(x - ci) + 1, then the representation of x so obtained is optimal and uses the 

coin ci. Conversely, given an optimal representation of x that uses ci, we can obtain 
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a representation of x - ci of size M(x) - 1 by subtracting one from the coefficient of cir 

and (6) implies that this representation is optimal. 0 

Theorem 2.2. Let 1 =cl < ... <c, be any system of coins. If there exists an x such that 

M(x) < G(x), then the smallest such x lies in the range 

c3+l<x<c,+c,_1. (71 

Moreover, these bounds are tight. 

Proof. Certainly M(x)= G(x) for all x<c3, since cl, c2 is a canonical system. In 

addition, neither c3 nor cj + 1 provides a counterexample, since in both cases the 

greedy representation is optimal. This establishes the lower bound. 

To prove the upper bound, let x>c,+c,_ 1 and assume inductively that 

G(y) = M( y) for all y < x. Let Ci be any coin used in some optimal representation of x. 

If i=m, then 

G(x)=G(x-c,)+ 1 by definition of G 

= M(x-c,)+ 1 by induction hypothesis 

= M(x) by Lemma 2.1. 

If i<m, then 

G(x)=G(x-c,)+ 1 by definition of G 

=M(x-c,)+ 1 by induction hypothesis 

dM(X-C,-Ci)+2 by Lemma 2.1 

dG(x-c,-c,)+2 by definition of M 

=G(x-ci)+ 1 by definition of G 

=M(x-Ci)+ 1 by induction hypothesis 

= M(x) by Lemma 2.1 

<G(x) by definition of M. 

Thus, in either case G(x) = M(x). 

For k > 2, the systems 1, k, 2k - 2 give an infinity of systems for which the smallest 

counterexample is c3 + 2, and the systems 1, k, k + 1 give an infinity of systems for 

which the smallest counterexample is c,+c,_i - 1. Thus, the bounds (7) are 

tight. Cl 

Our simplified algorithm is based on the observation that we can avoid computing 

optimal representations by checking for the existence of witnesses instead of counter- 

examples. 
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Definition 2.3. A witness is an x for which 

G(x)>G(x-c)+ 1 

for some coin c < x. 

Lemma 2.4. (i) Every witness is a counterexample. 
(ii) Zf a counterexample exists, then the smallest one is a witness. 

Proof. (i) Suppose x is a witness; thus 

G(x-c)+l <G(x) 

for some coin c. Then 

M(x)<M(x-c)+l by Lemma 2.1 

<G(x-c)+l by definition of M 

<G(x). 

(ii) If x is a counterexample but not a witness, and if c is any coin used in an optimal 

representation of x, then x-c is also a counterexample: 

M(x-c)=M(x)- 1 by Lemma 2.1 

<G(x)-1 

<G(x-c). 

Therefore, the smallest counterexample must be a witness. 

The converse of Lemma 2.4(i) is false: in the system 1,4,.5, the value 12 is a counter- 

example but not a witness. In this example, the coin 4 is used in the optimal 

representation 0,3,0 of 12; therefore 8 = 12 -4 is also a counterexample. It is in fact 

the smallest counterexample, thus is also a witness. 

Theorem 2.5. For a given system to be canonical, it is necessary and suficient that there 

exist no witness in the range (7). 

Proof. Immediate from Theorem 2.2 and Lemma 2.4. 0 

Theorem 2.5 implies that to test whether a given system is canonical, it suffices to 

check whether 

G(x)<G(x-c)+ 1 

for all x in the range (7) and coins c -=z x; we need not calculate any optimal representa- 

tions. All necessary values of G(x) can be computed in time O(n) using the recurrence 

(5); thus the entire algorithm takes time O(mn). 
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3. A characterization of three-coin systems 

In this section we characterize completely all systems of three coins. This character- 

ization gives a trivial O(log n) test for determining whether the system is canonical. 

Let 1 <c <d and let q and r be the quotient and remainder, respectively, obtained 

from the integer division of d by c. Thus, q and Y are the unique integers such 

that 

d=qc+r, 

Odr<c. 

(8) 

(9) 

Theorem 3.1. The system 1, c, d is not canonical if and only if 0 < r < c - q. 

Proof. If 0 < Y < c - q, then the value d + c - 1 is a counterexample: the greedy repres- 

entation c - l,O, 1 is of size c > r + q, whereas the representation r - 1, q + 1,O is of size 

r+q. 
Conversely, suppose 1 <c <d is not canonical, and let x be the smallest counter- 

example. The greedy representation of x must be of the form e, 0,l with 0 <e < c, since 

d + 1 < x < c + d by Theorem 2.2. Moreover, there is a unique optimal representation 

of x of the form 0, k, 0 with k > 0, since if the coefficient of either 1 or d were nonzero, 

then by Lemma 2.1 we could subtract one and get a smaller counterexample. Since 

x=d+e=kc, we have 

d=kc-e=(k-l)c+(c-e), 

O<(d+c)-x=(d+c)-(d+e)=c-e<c, 

and since q and r are unique numbers satisfying (8) and (9), we must have q = k - 1 and 

r=c-e. Since x is a counterexample, we have that k< 1 +e; thus q= k- 1 <e and 

O<c-e=r, from which the desired inequalities O<r<c-q follow. q 

4. Large coins 

The characterization of the previous section yields a simple O(log n) algorithm for 

determining whether a given system of three coins is canonical. In this section we give 

an algorithm whose time complexity is O(log n) for any fixed number of coins m. The 

complexity of the algorithm is 0(m22”- ’ log n). 
Recall that Lx/c] and x mod c denote the integer quotient and remainder, respec- 

tively, obtained when dividing x by c. Thus, 

x=Lx/c Jc+xmodc, 

O<xmodc<c, 

and Lx/c] and x mod c are the unique numbers for which these two statements hold. 
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Let yi(x) denote the greedy representation of x in the system 1 = c1 < ... < ci. Thus, 

Yl(x)=x, 

where (a, Z) denotes the sequence obtained by appending the integer z to the end of 

the sequence a. 

Define the equivalence relation E : on integers x 3 k by 

where - applied to the sequences yi ( ) denotes componentwise difference. Note that 

x = cc”, y for every x, y 3 c,. It follows from the observation 

G(x)-GG(x-c)= 5 (Ym(X)-YYm(X-cC))i 
i=l 

that if x = ,” y for a coin c, then x satisfies the property 

G(x)dG(x-c)+ 1 (10) 

if and only if y does. Thus, in order to find a witness, it suffices to check (10) for one 

representative x from each =,“-class for each coin c. We will show below (Theorem 

4.2) that for each coin c there are at most 2”- ’ E,” -classes, and representatives can be 

constructed efficiently. 

The formal statement and proof of Theorem 4.2 do not adequately reflect the 

intuition behind them, so we preface the formalities with the following intuitive 

argument. 

Fix k and consider the difference Y~(x)-Y~(x- k) of the greedy representations 

of x and x-k as x increases. The last coefficient of this difference, namely 

Lx/cm1 -l_(x-Wc,1> It a ernates periodically between two values r and r+ 1 (unless 

k is a multiple of c,, in which case there is only one value). We can thus think of x as 

being in one of two states, depending on the value of this coefficient. The state changes 

whenever either x or x-k skips over a multiple of c,. In between the times when this 

state changes, the next-to-last coefficient of y,(x) - y,(x - k) alternates periodically 

between two states in a similar fashion, but with period c, _ 1, and so on. Thus, each 

coin value ci, i32, accounts for two states (there is only one state for c1 = l), giving 

2”- ’ global states. 

Formally, let x,y, and c be integers, c positive. Define 

t,(x,y)=L(~modc+ymodc)/c~~{O, l}. 

The function t, formalizes the “state” for coin c as described above. The following 

lemma establishes some basic observations regarding this function. 
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Lemma 4.1. The function t, satisfies the following properties: 

(x+y)modc=xmodc+ymodc-ct,(x,y), 

L(.~+Y)lcJ=LX/CJ+LYICJ+tc(X,Y), 

t,(x,y)=O c--f xmodcd(x+y)modc, 

tJx,y)= 1 + t,(y+x, -x)=0. 

These properties follow immediately from the definitions. 

Now define the sets 

A: = {k}, 

A6=~Lk/CilCi+uIU~A~-,‘,,,i}U{k+UIU~AfI:,,,,,,), i>l. 

Theorem 4.2. The set A: contains the minimum element ofeach = i-class. In other words, 

for all x 2 k there exists a YE Ai such that 

k<y<x, (11) 

y =;x. (12) 

Proof. The proof is by induction on i. The basis is immediate from the definition of 

Ai and y,. 

For i > 1, let ti= t,,. We break the proof into two cases, depending on the value of 

ti(k, x-k). First suppose ti(k, x-k) = 0. Then k mod ci < x mod ci. By the induction 

hypothesis, there exists a UEA~;$~, such that 

kmodci<u<xmodci, (13) 

u=hkidcixmodci. (14) 

Let 

y=Lk/cijci+uEAL. 

By (13) and the fact that kdx, we have 

k=Lk/cijCi+kmodci 

<Lk/cijci+u (=y) 

dLx/ciJci+xmodci 

= x. 

This establishes (11). By Lemma 4.1, we also have that ti(k, y-k)=O, since 

kmodci<u=ymodci. 
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By (14) and the fact that ti(k, x-k) = ti(k, y-k) = 0, we have 

=Yi_l(ymodci)-yi_l(ymodci-kmodci) 

(15) 

Now suppose ti(k, x-k)= 1. By Lemma 4.1, ti(x, - k)=O; thus (-k)mod ci,< 

(x-k)modq. By the induction hypothesis, there exists a ~~~~~~~~~~~~ such that 

(-k)modci<a<(x-k)modci, (16) 

Let 

~=;--:,modc, (x-k)modci. (17) 

y=k+uEA:. 

By (16) and the fact that k dx, we have 

k<k+v (=y) 

<k+(x-k)modci 

6 x. 

This establishes (11). We also have that ti(k, y-k) = 1: 

kmodci+(y-k)modci=kmodci+amodci 

2kmodci+(-k)modci 

= Ci, 

since kmodci#O by Lemma 4.1. By (17) and the fact that t,(k,x-k)=ti(k,y-k)= 1, 

we have 

Yi-l(xmodci)-Yi_l((x-k)modci) 

=-(pi-l((x-k)modci)-pi-I(xmodci)) 

= -(Yi-l(u)-_yi-,(v-(-k)modci)) 

(18) 
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Now for either value of ti(k, x-k), we have ti(k, x-k)= ti(k, y- k). Then by 

Lemma 4.1, 

Lx/CiJ-L(x-k)/ciJ=Lk/ciJ+ti(k,x-k) 

=Lk/‘ciJ +ti(k,y-k) 

=LylciJ-LL(y-kk)/ciJ. 

Thus, in either case, using (15), (1 S), and (19) we have 

(19) 

Yi(x)-yi(x-k) 

=(ri-1(XmodCi),LXICij>-(Yi-1((X-k)modCi),L(X-k)/ciJ) 

=(~i_~(xmodCi)-~i_~((X-k)modci),LX/ciJ-L(X-k)/ciJ) 

=(Yi-l(ymodci)-Yi-I((y-kk)modci),LYIciJ -L(Y-kk)lciJ) 

=(yi-~(ymodCi),L~/CiJ>-(Yi-~((y-k)modCi),L(y-k)lciJ) 

=Yi(Y)-‘Ji(Y-k), 
which establishes (12). q 

It is easily shown by induction that the set A; contains at most 2”-’ elements, and 

each element of AT is less than 

Moreover, the straightforward method of constructing Ap according to its inductive 

definition takes time O(m2”-’ log n). Thus, to check whether the system is canonical, 

we need only determine (10) for all coins c and XEA;. There are m2”-l such x to 

check, and each check takes time O(mlogn). 

5. An NP-completeness result 

Lueker [3] shows that when the coin values are large and represented in binary, the 

problem of finding an optimal representation of a given x is NP-hard. Here we show 

the following theorem. 

Theorem 5.1. It is co-NP-complete to determine, given a system of coins and a number 
x represented in binary, whether the greedy representation of x is optimal, 

Proof. The problem is clearly in co-NP: we can compute the greedy representation of 

x in linear time, then find a better one, if it exists, by guessing. 
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To show co-NP-hardness, we will encode the problem of exact cover by three-sets: 
given a set X and a family 8 of three-element subsets of X, can X be represented as 

a disjoint union of elements of 6? This problem is known to be NP-complete (see [2]). 

Assume without loss of generality that X = (1,2, . . . ,3n). Let p = n + 1. Consider the 

system of coins 

ieA 

3” 

cx= 1 pi, 

i=l 

and a penny. Let 

x=n+cx. 

The greedy algorithm gives a representation of x of size n+ 1 consisting of cx and 

n pennies. This is optimal unless there is an exact cover, in which case a better 

representation is obtained by taking cA for A in the cover. 0 

The problem of Theorem 5.1 differs from the problem of determining whether 

a given system of coins is canonical in that in the former we are asking whether greedy 

is optimal for a given x, whereas in the latter we are asking whether greedy is optimal 

for all x. We know by Theorems 2.5 and 5.1 that both problems are in co-NP, and the 

former is complete. An interesting question that we have not succeeded in answering is 

whether the latter is complete, or whether there is an algorithm whose time complex- 

ity is polynomial in m and logn. 
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