
1 Motivation problem

[Ben1, Chapter 7]

Bentley’s problem:

• Given an array A[1..n] of integer numbers.

• Find contiguous subarray which has the largest sum.

Example:

31 -41 59 26 -53 58 97 -93 -23 84

^^^^^^^^^^^^^^^

187

Quiz questions:

• What if all numbers are positive?

• What if all numbers are negative?

(Simple) Solution 1: Try all possible subarrays and choose one with the largest sum.

max:=0;

for i:=1 to n do

| for j:=i to n do

| | // compute sum of subarray A[i]..A[j]

| | sum:=0;

| | for k:=i to j do

| | | sum:=sum+A[k];

| | // compare to maximum

| | if sum>max then max:=sum;

Recall: O notation for measuring how running time grows with the size of the output.
Informally: Running time is O(f(n)) if it is “proportional” to f(n) for the input of size n.

Time: O(n3)

Q: Can we do better?

Solution 2a: We don’t need to recompute sum from scratch every time.

max:=0;

for i:=1 to n do

| sum:=0;

| for j:=i to n do

| | sum:=sum+A[j];

| | // sum is now sum of subarray A[i]..A[j]

| | // compare to maximum

| | if sum>max then max:=sum;
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Time: O(n2)

Solution 2b: We can compute sum in constant time if we do a little bit of pre-computation.
Let B[i] be the sum of A[1] + · · ·+ A[i].

Then A[i] + · · ·+ A[j] = B[j]−B[i− 1].

// precompute B[i]=A[1]+...+A[i]

B[0]:=0;

for i:=1 to n do

| B[i]:=B[i-1]+A[i];

max:=0;

for i:=1 to n do

| for j:=i to n do

| | // compare to maximum

| | if B[j]-B[i-1]>max then

| | | max:=B[j]-B[i-1];

Time: O(n2)

Solution 3 (Divide-and-conquer):

Recall MergeSort:
To sort the array:

• Divide an array into two equally-sized parts

• Sort each part separately

• Solution is obtained by “merging” the smaller solutions

The same approach can be used here:

• Divide an array into two equally-sized parts

• Our solution must either be entirely in the left part, or entirely in the right part, or must be going
“through the midle”; therefore:

– Find the maximum subarray for left part (maxL) and right part (maxR)

– Find the maximum subarray going “through the middle” (maxM ) — this can be done in linear
time O(n)

– max{maxL,maxR,maxM} is the solution.

Examples:

max_M=32+155=182

vvvvvvvvvvvvvvvvv

31 31 -70 59 26 -53 | 58 97 -90 -90 80 80

^^^^^ ^^^^^

max_L=85 max_R=160

max_M=2+155=157

vvvvvvvvvvvvvvvvv
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31 31 -70 59 26 -83 | 58 97 -90 -90 80 80

^^^^^ ^^^^^

max_L=85 max_R=160

max_M=0+155

vvvvvvv

31 31 -70 59 26 -93 | 58 97 -90 -90 80 80

^^^^^ ^^^^^

max_L=85 max_R=160

Time: O(n log n), as in MergeSort.
(If interested in the details, have a look at PP, chapter 7)

Solution 4:

• maxsol i be the maximum sum subarray of array A[1.. i ].

• tail i be the maximum sum subarray that ends at position i.

What is the relationship between maxsol i and maxsol i−1?

maxsol i = max

{
maxsol i−1,
tail i,

tail i = max

{
tail i−1 + A[i],
0.

maxsol:=0; tail:=0;

for i:=1 to n do

| // maxsol now corresponds to maxsol[i-1]

| // tail now corresponds to tail[i-1]

| tail:=max(tail+A[i],0);

| maxsol:=max(maxsol,tail);

Time: O(n)

Time comparison

• Solutions implemented in C.

• Some of the values are measured, some of them are estimated from the other measurements.

• Solution 0 is a fictitious exponential-time solution (just for comparison with others)

• ε means under 0.01s
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Sol.4 Sol.3 Sol.2 Sol.1 Sol.0
O(n) O(n log n) O(n2) O(n3) O(2n)

Time to 10 ε ε ε ε ε
solve a 50 ε ε ε ε 2 weeks
problem 100 ε ε ε ε 2800 univ.
of size 1000 ε ε 0.02s 4.5s —
. . . 10000 ε 0.01s 2.1s 75m —

100000 0.04s 0.12s 3.5m 52d —
1 mil. 0.42s 1.4s 5.8h 142yr —

10 mil. 4.2s 16.1s 24.3d 140000yr —
Max size 1s 2.3 mil. 740000 6900 610 33
problem 1m 140 mil. 34 mil. 53000 2400 39
solved in 1d 200 bil. 35 bil. 2 mil. 26000 49
Increase in +1 — — — — ×2
time if n ×2 ×2 ×2+ ×4 ×8 —
increases

Points to take home:

• Even with today’s fast processors, designing better algorithms matters.

• Asymptotic notation is a relevant measure of the running time of algorithms. It allows us to eas-
ily analyze and compare algorithms and abstract away implementation details and computer-specific
issues.

• For a single problem there can be several solutions with different time complexities. Sometimes a better
solution can be even easier to implement.

• Polynomial-time algorithms are much better than exponential ones.
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2 Analyzing Running Time of Algorithms

[BB chapters 2,3.1-3.3,4.1-4.4] or [Par sections 1.1-1.4] or [CLRS2 chapters 1-3]

2.1 Problem-Algorithm-Instance-Running Time

We design algorithms to solve problems:

• What are valid inputs (or instances)?

• What output should we get for each input?

In Bentley’s problem:

• Input: any array of integers

• Output: subarray with maximum sum

An algorithm solves the problem if for every valid instance of the problem it finds a valid output.

Running time:

• Running time of an algorithm A on instance x is the time that algorithm A requires to solve input
x (denote TA(x)).

• (Worst-case) running time of an algorithm A is a function of the size of the input instances, where

TA(n) is the largest time required to solve instance an of size n, or

TA(n) = max{TA(x) | |x| = n}

• Time complexity of a problem is a running time of the best algorithm solving the problem.

Note: We did not yet define boxed terms .

Size of the instance
Formally: number of bits needed to encode the
input.

In Bentley’s problem: sum of number of bits
needed to encode all the numbers in the array.

This is often too complicated – we choose some
other (more natural) parameter of the input.

In Bentley’s problem: number of elements in the
array.

Running time on the instance

To simplify theoretical analysis, we need to abstract away details of the computation (exact speed of the
processor, disk, memory, caching, etc.); therefore we count the number of elementary operations.

([PP] talks about how to account for some of these issues.)

Elementary operation is an operation whose time can be bounded by a constant that depends only on
the implementation of the operation (either in hardware on software) and not on the inputs of the operation.

• Elementary operations: simple arithmetic operations, comparisons (problems when large numbers
or arbitrary precision arithmetic is allowed), program flow control operations, etc.

• Not elementary operations: maximum in an array of numbers, does string contain a given sub-
string?, concatenation of two strings, factorial, etc. (beware: many programming languages offer
constructs that are not elementary operations)
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Note: Notion of elementary operation depends somewhat on the computational model. For most of the
course an intuitive notion of the elementary operation will be satisfactory. We will introduce a formal model
of computation later.

2.2 Asymptotic Notation

. . . or how to compare algorithms.

Definition 1. Function f(n) is in O(g(n)) iff there exist c > 0 and n0 > 0 such that:

(∀n > n0)(0 ≤ f(n) ≤ cg(n))

Notation: f(n) ∈ O(g(n)) or f(n) = O(g(n)).
The following claims can be proven from the definition (some of them are on the assignment):

• if f(n) ∈ O(g(n)) and c > 0 is a constant
then cf(n) ∈ O(g(n))

• if f(n) ∈ O(f ′(n)) and g(n) ∈ O(g′(n)) then

– f(n) + g(n) ∈ O(f ′(n) + g′(n))

– f(n)g(n) ∈ O(f ′(n)g′(n))

• Maximum rule. If t(n) ∈ O(f(n) + g(n))
then t(n) ∈ O(max(f(n), g(n)))

• Transitivity. If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n))
then f(n) ∈ O(h(n))

Examples:

• 3.8n2 + 2.6n3 + 10n log n ∈ O(n3) (we use as simple form as possible)

• 10100n ∈ O(n)

• (n + 1)! ∈ O(n!) true or false?

• 22n ∈ O(2n) true or false?

• n ∈ O(n10) true or false? (*)

Example (*) shows that we need other asymptotic notations.
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Notation Definition Analogy to
arithmetic
comparisons

f(n) ∈ O(g(n)) There exists c > 0 and n0 > 0 s.t.
(∀n > n0)(0 ≤ f(n) ≤ cg(n)) ≤

f(n) ∈ Ω(g(n)) There exists c > 0 and n0 > 0 s.t.
(∀n > n0)(f(n) ≥ cg(n) ≥ 0) ≥

f(n) ∈ Θ(g(n)) f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))
=

f(n) ∈ o(g(n)) For any c > 0 there exists n0 > 0 s.t.
(∀n > n0)(0 ≤ f(n) < cg(n)) <

f(n) ∈ ω(g(n)) For any c > 0 there exists n0 > 0 s.t.
(∀n > n0)(f(n) > cg(n) ≥ 0) >

How to prove that f(n) /∈ O(n)?

Definition:
f(n) ∈ O(g(n))⇔ (∃c > 0)(∃n0 > 0)(∀n > n0)(0 ≤ f(n) ≤ cg(n))

Negation:
f(n) /∈ O(g(n))⇔ (∀c > 0)(∀n0 > 0)(∃n > n0)(f(n) < 0 or f(n) > cg(n))

Example: (n + 1)! /∈ O(n!)
It holds: (n + 1)! = (n + 1) · n!. Now, take any c > 0 and n0 > 0 and take n = dcedn0e. Then:

(dcedn0e+ 1)(dcedn0e)! > c(dcedn0e)!

Note: The negation is not identical to the definition of ω(g(n)).

• if f(n) ∈ ω(g(n)) then f(n) /∈ O(g(n))

• if f(n) ∈ O(g(n)) then f(n) /∈ ω(g(n))

• but there are functions where f(n) /∈ O(g(n)) and f(n) /∈ ω(g(n))
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