3 Greedy Algorithms

[BB chapter 6] with different examples or [Par chapter 2.3] with different examples or [CLR2 chapter 16] with different approach to greedy algorithms

3.1 An activity-selection problem

Problem: We have a set of n activities $A_{1}, \ldots, A_{n}-\operatorname{activity} A_{i}$ starts at time s_{i} and finishes at time f_{i}. We want to participate at as many activities as possible (but activities cannot overlap).

Example: Summer camp activity selection:


```
    9:00-10:00 Horseback riding *
10:00-11:00 Canoeing
11:00-12:30 Swimming
10:30-11:30 Kayaking *
11:30-12:00 Lunch *
    1:00- 3:00 Napping *
    4:00- 4:30 Pizza *
```

Q: Suggestions for algorithms to solve this problem?

A1: Shortest activity first

Who needs lunch when you can canoe all day?

A2: First starting activity first

All day trip
<-----------X---X--------------->
Basketball Lunch Frisbee

Solution: First ending activity first

```
Sort all activities by their finishing time
(now f[1]<=f[2]<=_..<=f[n])
last_activity_end:=-infinity;
for i:=1 to n
    if (s[i]>=last_activity_end) then
        output activity (s[i],f[i]);
        last_activity_end:=f[i];
```

Running time: $\Theta(n \log n)$

Note:

- All previous examples correct
- There can be more than one optimal solution

Proof of correctness.

Assume without loss of generality:

- Activities are sorted by their finishing time, i.e. $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$.
- We assume all solutions in the text below are sorted in the same order.

Lemma 1. Assume the greedy solution selected activities $G=\left(G_{1}, \ldots, G_{k}\right)$. Then for any $0 \leq l \leq k$ there exists an optimal solution of the form $O=\left(G_{1}, \ldots, G_{l}, O_{l+1}, \ldots, O_{m}\right)$.

Proof. Proof by induction on l.

Base case. If $l=0$ then the statement holds trivially.
Induction step. Assume that the statement holds for l. Therefore there exists an optimal solution $O=$ $\left(G_{1}, \ldots, G_{l}, O_{l+1}, \ldots, O_{m}\right)$.
Note that:

- $s_{O_{l+2}} \geq f_{O_{l+1}}$ (because O must be a correct solution of the activity selection problem),
- $f_{G_{l+1}} \leq f_{O_{l+1}}$ (because, otherwise, O_{l+1} would have been chosen by the greedy algorithm).

Therefore G_{l+1} can be substituted for O_{l+1} in the solution O, yielding solution O^{\prime}. Solution O^{\prime} :

- is of the same size as O (therefore it is optimal),
- agrees with G on at least $l+1$ first activities

Thus the statement holds for $l+1$ as well.

Theorem 1. The greedy algorithm always finds an optimal solution.
Proof. Using previous lemma for $l=k$, we know that there exists an optimal solution of the form

$$
O=\left(G_{1}, \ldots, G_{k}, O_{k+1}, \ldots, O_{m}\right)
$$

Assume that $m>k$. Then this means that starting time $s_{O_{k+1}} \geq f_{G_{k}}$; but O_{k+1} would be added to G by the algorithm. Contradiction.

3.2 Greedy algorithms - summary

Approach we have taken to solve the activity selection problem is, in general, called greedy.

Outline of typical greedy algorithm.

- Every solution can be obtained by series of choices.
e.g.: choice of activities in activity selection problem
- But not all choices lead to an optimal solution.
e.g.: some sets of activities are smaller than the optimal set; not all sets of activities can be extended to an optimal set
- In each step:
- Consider all options for the current choice.
e.g.: what activity to choose next?
- Weight the options by a weighting function. e.g.: finishing time of the activity
- Take the option which has the largest weight (or: choose whatever seems best right now) e.g.: choose activity with the smallest finishing time

The most challenging part is to prove that a greedy algorithm yields an optimal solution. (Remember: usually there can be more than one optimal solution.)

Outline of typical proof. (one possible way)
Lemma Template 1. Assume the greedy algorithm gives the solution G.
There exists an optimal solution which agrees with G on first k choices.
Proof. By induction on k.
Base case. For $k=0$ - any optimal solution will do.
(Who could make a mistake when presented with no choice?)
Induction step. (Assume we did not make mistake in first k choices; show that ($k+1$)st choice was OK as well.)

- Assume that there exists an optimal solution $O P T$ which agrees with the greedy solution on first k choices.
- Create a new solution $O P T^{\prime}$ such that:
- $O P T^{\prime}$ has the same value as $O P T$ (and therefore is optimal as well)
- It agrees with G on one more $(k+1)$ st choice.

Points to take home:

- Greedy algorithms are usually simple to describe and have fast running times $(\Theta(n)$ or $\Theta(n \log n))$.
- The hard part is demonstrating that the solution is optimal.
- This can be often done by induction: "change" any optimal solution to the greedy one without changing its cost.

3.3 Huffman codes

Binary prefix codes. Assume we have an alphabet of four characters: a, b, n, s. Let us represent these characters in binary code as follows:
a 00
b 01
n 10
s 11
bananas 01001000100011 (14 bits)

Binary tree representation: leaves $=$ characters of the alphabet; path to a leaf = binary code for the character

Q: Must all leaves have the same depth?
A: No!

Encoding: For each character locate corresponding leaf and follow the path, adding 0 s when going left and 1 s when going right.
bananas 0001011011001 (13 bits - wow!)
Decoding: Start from the root of the tree, when you see 0 go left, when you see 1 go right, when you enter leaf write-out the letter and start from the root again.

Note: Binary codes that can be represented by a tree are called prefix codes (code of any character cannot be a prefix of code of any other character).

Idea: For a given string, different trees give a different length of the encoding. Thus by choosing a proper tree we can compress the string.

Problem: Given a string $S=s_{1} s_{2} \ldots s_{m}$ over alphabet $\Sigma(|\Sigma|=n)$, find a prefix code (i.e. binary tree) that yields the shortest encoding of the string.
(Such a tree is called Huffman's tree)

Notation:

- Frequency $f(x)$ of a character x in string S is the number of characters x occurring in string S.
- We can extend this to a frequency of a subtree C of the tree T :

$$
f(C)=\sum_{x \text { is a leaf in } C} f(x)
$$

- Let $\operatorname{depth}_{T}(x)$ be the depth of a leaf x in a tree T.
- Weight $w(T)$ of a tree T is the length of the encoding of string S using tree T (in bits):

$$
w(T)=\sum_{i=1}^{m} \operatorname{depth}_{T}\left(s_{i}\right)=\sum_{x \in \Sigma} f(x) \operatorname{depth}_{T}(x)
$$

- We can extend this to a weight of a subtree C of the tree T :

$$
w(C)=\sum_{x \text { is a leaf in } C} f(x) \cdot \operatorname{depth}_{C}(x)
$$

Observation: The characters which occur less often should be located deeper in the tree.

```
Greedy algorithm:
Compute frequencies of all characters in S
F:=empty-forest;
for all characters x in the alphabet do
    T:=new leaf(x);
    add T to F;
while F contains more than one tree do
    T1:=extract tree with minimum frequency from F;
    T2:=extract tree with minimum frequency from F;
    T:=new tree where T1 is a left child
                        and T2 is a right child;
    add T to F;
return F;
```


Example:

bananas:	
x	f (x)
b	1
a	3
n	2
s	1

Proof of correctness.

Lemma 2. Let $F=\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ is a forest obtained by the greedy algorithm after i steps. Then there exists an optimal coding tree which contains $T_{1}, T_{2}, \ldots, T_{k}$ as subtrees.

Note: From the lemma: after $n-1$ steps of the greedy algorithm we obtain an optimal tree.
Proof. By induction on i.
Base case. After 0 steps, we have a forest composed of singleton vertices - the lemma holds trivially.

Induction step.

- Assume that after i steps the greedy algorithm has a forest $F=\left(T_{1}, T_{2}, \ldots, T_{k}\right)$.
- From IH we can assume that there exists an optimal tree $O P T$ which contains all T_{1}, \ldots, T_{k} as subtrees.
- Without loss of generality: we can assume that the greedy algorithm in the step $i+1$ joins T_{1} and T_{2} to T^{\prime}, and that T_{2} is positioned deeper (or in the same depth) than T_{1}.
(Note the difference from the lecture presentation!)
- If T_{1} and T_{2} are siblings in $O P T$ we are done (T^{\prime} is a subtree of $O P T$ and thus the lemma holds for i steps as well).
- Otherwise: T_{2} must have a sibling subtree B. Exchange T_{1} and B, as on the picture, yielding new tree $O P T^{\prime}$:

Note:

- Contribution of a leaf x to the weight of the tree T is $\operatorname{depth}_{T}(x) \cdot f(x)$.
- Contribution of a subtree T_{1} to the weight of the tree T is:

$$
\sum_{x \text { is a leaf in } T_{1}} \operatorname{depth}_{T}(x) \cdot f(x)=d_{1} \cdot f\left(T_{1}\right)+w\left(T_{1}\right)
$$

Weight before (i.e., weight of $O P T$):

$$
\text { BEFORE }=d_{1} f\left(T_{1}\right)+w\left(T_{1}\right)+\left(d_{2}+1\right) f(B)+w(B)+\left(d_{2}+1\right) f\left(T_{2}\right)+w\left(T_{2}\right)+R E S T
$$

Weight after (i.e., weight of $O P T^{\prime}$):

$$
A F T E R=d_{1} f(B)+w(B)+\left(d_{2}+1\right) f\left(T_{1}\right)+w\left(T_{1}\right)+\left(d_{2}+1\right) f\left(T_{2}\right)+w\left(T_{2}\right)+R E S T
$$

Difference:

$$
w\left(O P T^{\prime}\right)-w(O P T)=A F T E R-B E F O R E=\left(f(B)-f\left(T_{1}\right)\right)\left(d_{1}-\left(d_{2}+1\right)\right)
$$

Note:

$-T_{1}, \ldots, T_{k}$ contain all leaves; therefore B is either one of T_{3}, \ldots, T_{k} or it contains one of them (because $O P T$ contains T_{1}, \ldots, T_{k} as subtrees).

- Thus for some $j \geq 3: f(B) \geq f\left(T_{j}\right) \geq f\left(T_{1}\right)$
- Since T_{2} was deeper in $O P T$ than $T_{1}, d_{2}+1 \geq d_{1}$.
- Thus: AFTER - BEFORE ≤ 0
- Thus $O P T^{\prime}$ is an optimal tree and it contains $\left(T^{\prime}, T_{3}, \ldots, T_{k}\right)$ as subtrees.

How long does it take? Depends on the implementation of the "forest" data structure:

- list of trees: $\Theta\left(m+n^{2}\right)$
- priority queue: $\Theta(m+n \log n)$

