Preliminaries

- CNF conjuctive normal form
 - *formula* = a conjuction of *clauses*
 - *clause* = a disjunction of *literals*
 - *literal* = (possibly negated) variables
- SAT-problem
 - 2-SAT solvable in \(O(n)\)
 3-SAT NP-hard
 - - can solve general SAT

Local search - 2-SAT

- easy *heuristic* for hard problems:
 - 1. usually start with random solution
 - 2. apply small (local) changes, if beneficial
 - e.g. hillclimbing
 - e.g. 2-opt for TSP (cross quadruples)
- local search for SAT [Papadimitrou '91]:
 - 1. start with random valuation
 - 2. repeat (t) times:
 - pick unsatisified clause
 - pick any literal and *flip*
- randomized algorithms: \(P \leq ZPP \leq RP\) • this will be in (RP) for the right (t)
 - always return NO for unsat.
 - sometimes return YES for sat.
- false negatives how often? • but first: expected number of flips to sat.
- random walk:
 - assume sat. (unsat. is pointless)
 - \circ let (A) =our valuation
 - $\circ let (A^*) = some satisfying valuation$
 - walk on $(Hamming(A, A^*))$
- Markov chain:
 - to right: $(\langle q \rangle \{1\} \{2\})$
 - to left: $(\left| \left| \frac{1}{2} \right|)$
 - \circ analysis $\rightarrow (n^2)$
- Markov Inequality if \(X\) is nonnegative, then:

 $[P[X \geq a] \eq [E[X]]{a}]$

• so if expected number of steps is (n^2) :

 $\left[P[X \geq 2 E[X]] \right] \left[eq \frac{E[X]}{2 E[X]} = \frac{1}{2} \right]$

• so for $(t := 2 n^2)$, it works with $(p \langle q q \rangle (1) \{2\}) \rightarrow (RP)$

Local search - 3-SAT

- random walk Markov chain:
 - to right: $(\langle geg \setminus frac \{1\} \{3\})$
 - to left: $(\left| \left| \frac{2}{3} \right| \right)$
 - no analysis $\rightarrow (O(2^n)) bad$
 - optionally: Hongyu Sun on page 2
- what now?
 - o bigger \(t\) doesn't help
 - if we fail we might be very close to zero
 - o instead: multiple tries from new random valuations
 - cf: random-restart hill-climbing