Preliminaries

- CNF - conjuctive normal form
- formula $=$ a conjuction of clauses
- clause $=$ a disjunction of literals
- literal $=($ possibly negated $)$ variables
- SAT-problem
- 2-SAT - solvable in
(O(n)
)
- 3-SAT - NP-hard
- can solve general SAT

Local search - 2-SAT

- easy heuristic for hard problems:

1. usually start with random solution
2. apply small (local) changes, if beneficial
\circ e.g. hillclimbing

- e.g. 2-opt for TSP (cross quadruples)
- local search for SAT [Papadimitrou '91]:

1. start with random valuation
2. repeat $\backslash(\mathrm{t} \backslash)$ times:

- pick unsatisified clause
- pick any literal and flip
- randomized algorithms:
(P \leq ZPP \leq RP
)
- this will be in $\backslash(R P \backslash)$ for the right $\backslash(t \backslash)$
- always return NO for unsat.
- sometimes return YES for sat.
- false negatives - how often?
- but first: expected number of flips to sat.
- random walk:
o assume sat. (unsat. is pointless)
- let $\backslash(\mathrm{A} \backslash)=$ our valuation
- let $\backslash\left(\mathrm{A}^{\wedge} *\right)=$ some satisfying valuation
- walk on
(Hamming(A, A^{\wedge} *)
)
- Markov chain:
- to right: $\backslash(\backslash \operatorname{geq} \backslash \mathrm{tfrac}\{1\}\{2\} \backslash)$
- to left:
(\leq \tfrac $\{1\}\{2\} \backslash)$
\circ analysis $\rightarrow \backslash\left(\mathrm{n}^{\wedge} 2 \backslash\right)$
- Markov Inequality - if $\backslash(\mathrm{X} \backslash)$ is nonnegative, then:

$\[\mathrm{P}[\mathrm{X}$ \geq a] \leq $\backslash \operatorname{frac}\{\mathrm{E}[\mathrm{X}]\}\{\mathrm{a}\} \backslash]$

- so if expected number of steps is $\backslash\left(\mathrm{n}^{\wedge} 2 \backslash\right)$:
$\backslash[$ P[X \geq $2 \mathrm{E}[\mathrm{X}]] \backslash \operatorname{leq} \backslash$ frac $\{\mathrm{E}[\mathrm{X}]\}\{2 \mathrm{E}[\mathrm{X}]\}=\backslash \mathrm{frac}\{1\}\{2\} \backslash]$
- so for $\backslash\left(t:=2 \mathrm{n}^{\wedge} 2 \backslash\right)$, it works with $\backslash(\mathrm{p} \backslash \mathrm{geq} \backslash \operatorname{tfrac}\{1\}\{2\} \backslash) \rightarrow \backslash(R P \backslash)$

Local search - 3-SAT

- random walk - Markov chain: - to right:
(\geq $\backslash t f r a c\{1\}\{3\} \backslash)$ - to left:
((leq \tfrac $\{2\}\{3\} \backslash)$ \circ no analysis $\rightarrow \backslash\left(\mathrm{O}\left(2^{\wedge} \mathrm{n}\right) \backslash\right)$ - bad
- optionally: Hongyu Sun on page 2
- what now?
- bigger $\backslash(\mathrm{t} \backslash)$ doesn't help
- if we fail we might be very close to zero
o instead: multiple tries from new random valuations
- cf: random-restart hill-climbing

