
Vyhl’adávanie v texte 2013: Domáca úloha
15% celkovej známky + nepovinné bonusové otázky

Termín odovzdania: streda 27.3.2013 o 14:50

Ciel’om tejto domácej úlohy je implementovat’ dve rôzne dátové štruktúry a porovnat’̌cas
ich výpǒctu pre náhodné aj reálne dáta. Môžete použit’ l’ubovol’ný bežný programovací jazyk,
napríklad C/C++/C#, Java, Python alebo Pascal.Časti B-D a nepovinné bonusy odovzdajte v
papierovej forme na prednáške alebo v kancelárii M163 (ak jezamknuté, vsǔnte úlohu popod
dvere). Zdrojový kód vašich programov (časti A, C a bonusové otázky) odovzdajte v jednom
zozipovanom súbore prostredníctvom systému Moodle. Dbajte na prehl’adnost’ ǎcitatel’nost’
programu a ak máte viac ako jeden súbor, pripojte krátke README vysvetl’ujúce význam
jednotlivých súborov. Neodovzdávajte dátové súbory. Neopisujte kód ani text od spolužiakov
ani z internetu alebo iných zdrojov.

Budeme uvažovat’ abstraktný dátový typ, ktorý udržuje množinu slov a pre každé slovo
počítadlo jeho výskytov, pričom umož̌nuje nasledujúce operácie:

• init(σ ): vytvorí prázdnu štruktúru pre použitie abecedy vel’kosti σ (táto operácia môže
byt’ implementovaná ako konštruktor určitej triedy)

• add(w): zvýši pǒcítadlo pre slovow. Ak w ešte nie je v dátovej štruktúre, najskôr ho vloží

• frequent(k): vráti všetky slová, ktoré sa vyskytujú aspoň k krát a pǒcet výskytov každého
z týchto slov

Môžete predpokladat’, že abeceda pozostáva zo symbolov{0,1, . . . ,σ −1}. Slová môžete re-
prezentovat’ napr. ako polia celýchčísel.

Čast’ A, 6 bodov.

Implementujte dve verzie dátovej šturktúry popísanej vyššie s tým istým rozhraním. Prvá im-
plementácia je založená na všeobecnej implementácii asociatívneho pol’a (slovníka), ktorý má
slová ako kl’ú̌ce a pǒcítadlá ako hodnoty pre jednotlivé kl’úče. Môžete použit’ implementáciu
poskytnutú v štandardných knižniciach vami zvoleného jazyka (napr. map v knižnici STL pre
C++ alebo TreeMap v Jave). Ak váš programovací jazyk neposkytuje takúto dátovú štruktúru,
implementujte binárne vyhl’adávacie stromy. Táto implementácia bude opakovane porovnávat’
slová podl’a lexikografického usporiadania.

Druhá implementácia používa lexikografické stromy, pričom každý vrchol má smerníky na
synov uložené v poli d́lžky σ . Túto dátovú štruktúru implementujte sami, nepoužívajte hotové
knižnice.

Operácia frequent(k) môže prehl’adat’ celú dátovú štruktúru a vrátit’ slová splňujúce pod-
mienku, nemusíte sa teda snažit’ udržiavat’ štruktúry umožňujúce rýchle nájdeniěcasto sa vy-
skytujúcich slov.

Použite vaše dve implementácie v programe, ktorý načíta na vstupe postupnost’ slov, jedno
po druhom ich vloží ich do dátovej štruktúry a na konci vypíšezoznam slov, ktoré sa vyskyto-
vali aspǒn k krát a pǒcty ich výskytov. Slová môžete vypísat’ v l’ubovol’nom poradí. Program
by mal takisto merat’̌cas potrebný na vkladanie slov do štruktúry (nezahrňujtečas potrebný na
nǎcítanie a spracovanie vstupu, volanie operácie frequent(k) a formátovanie výstupu).

1



Poznámky k implementácii. Na stránke predmetu nájdete kostru programu v jazyku C++,
ktorá obsahuje nǎcítanie vstupu a meraniěcasu. Tento kód môžete použit’, ak plánujete praco-
vat’ v jazyku C++.

Ak váš program beží vel’mi krátko, môže byt’ t’ažké spol’ahlivo odmerat’čas výpǒctu. Preto
zopakujte celý algoritmus niekol’ko krát a merajte celkovýčas. Všetky experimenty spúšt’ajte
na tom istom pǒcítǎci a za podobných podmienok.

Vstupný súbor môže obsahovat’ l’ubovol’ný text. Znaky a-z aA-Z z anglickej abecedy
prekódujte na symboly 0..25 vstupnej abecedy, pričom ’a’ and ’A’ reprezentujú symbol 0, ’b’
a ’B’ symbol 1, atd’. L’ubovol’né iné znaky (medzery,čísla, špeciálne znaky atd’) považujte za
oddel’ovǎce slov. Budeme predpokladat’, žeσ ≤ 26.

Okrem hlavného vstupného súboru s textom by Váš program mal dostat’ (napríklad ako
nastavenia na príkazovom riadku) vel’kost’ abecedyσ , prahk, ktorú implementáciu má použit’
a d’alšie potrebné parametre.

Výstupný súbor na prvom riadku obsahuječas výpǒctu vášho programu a iné užitočné
štatistiky v l’ubovol’nom formáte, aký si zvolíte. Každý z d’alších riadkov má obsahovat’ jedno
z výstupných slov malými písmenami, medzeru a počet výskytov tohto slova.
Príklad: Uvažujmeσ = 26, k = 2. Nasledujúci vstupný súbor obsahuje tri výskyty slova ma,
dva výskyty slova mama a jeden výskyt slov ema, emu, mamu, sa.Jeden z možných správnych
výsledkov je vpravo.

Vstup: Výstup:

Mama123ma Emu time: 1s

Ema_*ma_mamu. Mama sa ma. mama 2

ma 3

Čast’ B, 3 body

Na stránke predmetu nájdete dva súbory, každý obsahujúci prvých 20000 slov z jednej knihy.
Vo vašej úlohe pre každý z týchto súborov uved’te, ktoré slová sa vyskytujú aspǒn k = 250 krát
a pǒcet ich výskytov. Tiež uved’te, kol’ko rôznych slov je v každom súbore (k = 1). Uved’te aj
čas výpǒctu obidvoch implementácií pre každý súbor.

Čast’ C, 4 body

Napíšte program, ktorý vygenerujez náhodných slov, každé dĺžky L nad abecedouσ s nezávis-
lými a rovnomerne rozdelenými znakmi. Uvažujtez = 20000,L ∈ {4,10} a σ ∈ {2,26}. Pre
každú z týchto štyroch kombináciíz, L a σ spustite obidve vaše implementácie na 10 náhod-
ných vstupoch. Spǒcítajte priemerný̌cas výpǒctu a smerodajnú odchylku (standard deviation)
pre každú implementáciu a nastavenie parametrov. Výslednéštatistiky uved’te v prehl’adnej
tabul’ke.

Čast’ D, 2 body

Okomentujte výsledné̌casy namerané v̌castiach B a C. Aké z nich vyvodzujete závery? Naprí-
klad, akú implementáciu by ste odporučili pre ktoré hodnoty parametrov? Správajú sa náhodné

2



slová podobne ako prirodzený jazyk? Zodpovedajú namerané hodnoty vašim ǒcakávaniam,
alebo vás niěcim prekvapili? Ako by ste prekvapivé javy zdvôvodnili?

Nepovinné bonusové otázky

Za nasledujúce otázky môžete dostat’ bonusové body (tieto body sa nezapǒcítavajú do limitu
10% na bonusové body za aktivitu). Bonusové otázky budú bodované prísnejšie, neočakávajte
čiastkové body za neúplné alebo nesprávne riešenia.

Čast’ E, 3 body

Naimplementujte tretiu verziu dátovej štruktúry, ktorá jetiež založená na lexikografickom
strome, ale zoznam detí udržuje v poli, ktorého vel’kost’ sadynamicky zvä̌cšuje podl’a pǒctu
detí (môžete použit’ napr. dátovú štruktúru vector). Smerníky na deti udržujte v poli utriedené
podl’a abecedy. V operácii add na vyhl’adanie príslušného diet’at’a použite binárne vyhl’adáva-
nie. Spustite testy žcasti B a C a okomentujte výsledky.

Čast’ F, 3 body

V časti B a C nemerajte ibǎcas výpǒctu, ale aj pamät’. Popíšte, ako ste to robili, uved’te name-
rané výsledky a okomentuje ich.

Čast’ G, 5 bodov

Spravte d’alšie experimenty na náhodných alebo reálnych dátach a pokúste sa objavit’ nejaké
zaujímavé trendy. Napríklad môžete experimentovat’ so zložitejšími modelmi náhodných slov,
porovnávat’ rôzne prirodzené jazyky, preskúmat’ viac hodnôt parametrovL, z aσ , skúsit’ menit’
nastavenia kompilátora alebo robit’ malé zmeny v implementácii. Navrhnite vaše experimenty
tak, aby odpovedali nejakú netriválnu otázku. Zdôvodnite návrh experimentov a rozdiskutujte
namerané hodnoty. Pri bodovaní je dôležitejší vhodný návrhexperimentov a vyvodené závery,
než len pǒcet experimentov, ktoré ste spravili.

Čast’ H, 4 body.

Popíšte ako rozšírit’ lexikografický strom žcasti A tak, aby v operácii frequent(k) nemusel
prehl’adávat’ všetky vrcholy. Podrobne popíšte vašu dátovú štruktúru, ale nemusíte ju imple-
mentovat’. Mala by sṕlňat’ nasledujúce požiadavky:

• Pre každý vrchol lexikografického stromu pridá pamät’ najviac vel’kostiO(1) a d’alšiu
celkovú pamät’O(1), bez ohl’adu na pǒcet výskytov slov.

• Čas výpǒctu funkcie add(w) zvýši najviac oO(1).

• Podporuje prechádzanie cez všetky slová v poradí podl’a klesajúceho pǒctu výskytov,
pričomčas na navštívenie jedného slova bude ibaO(1).

Môžete využit’ fakt, že pǒcítadlo pǒctu výskytov je pre každé slovo na začiatku nula a zvyšuje
sa iba operáciou add(w).

3


