

Organizačné poznámky

- DÚ na stránke, termín do stredy pred Veľkou nocou (27.3.)
- Témy nepovinného projektu do konca marca

Regular expressions, summary

- Thompson's algorithm 1968
 - parse R to a tree with m nodes
 - create NFA for $L(R)$ with $\leq 2m$ states and $\leq 4m$ transitions
 - simulate NFA on T in $O(nm)$ time
- DFA: $O(m^2\sigma 2^m + n)$
- Other approaches: hybrid of NFA and DFA, prefiltering, bit parallelism,
...

Patterns with wildcards

- Special character $*$ matches any character from Σ
- E.g. aa^*b matches $aaab$, $aabb$, $aacb$, ...
- Trivial algorithm $O(nm)$
- Shift-and $O(n + m + \sigma)$ from small m , BNDM good in average case
- Suffix trees $O(nk)$ where k is the number of wildcards
- Algorithm using FFT $O(n \log m)$
 - represent characters as numbers $\{1, 2, \dots, \sigma\}$, wildcard as 0
 - for each i compute $a_i = \sum_{j=0}^{m-1} P[j]T[i+j](P[j] - T[i+j])^2$
 - expression similar to multiplying polynomials P and T^R
 - occurrences of P have $a_i = 0$
 - trick with cutting T to overlapping windows of length $2m$

Polynomial multiplication by Fast Fourier Transform (FFT)

Input: Two polynomials

$$A(x) = \sum_{k=0}^{n-1} a_k x^k$$

$$B(x) = \sum_{k=0}^{n-1} b_k x^k$$

Goal: Compute product $C(x) = A(x)B(x)$

$$C(x) = \sum_{k=0}^{2n-2} c_k x^k$$

$$c_k = \sum_{j=0}^{n-1} a_j b_{k-j}$$

(define $b_j = 0$ if $j < 0$ or $j \geq n$)

Trivial algorithm: $O(n^2)$

FFT: $O(n \log n)$

Polynomial multiplication by FFT

- find $n = 2^k$ so that $A(x)B(x)$ has degree $< n$
- pad coefficients of A and B to length n
- compute $A(\omega_n^j)$ for $j = 0 \dots n - 1$ by FFT
- compute $B(\omega_n^j)$ for $j = 0 \dots n - 1$ by FFT
- compute $C(\omega_n^j) = A(\omega_n^j)B(\omega_n^j)$ for all j in $O(n)$
- convert $C(x)$ back to coefficient form by FFT

Use n th complex root of unity:

$$\omega_n = e^{2\pi i/n} = \cos(2\pi/n) + i \sin(2\pi/n)$$

Useful facts:

$$\omega_n^i \omega_n^j = \omega_n^{(i+j) \bmod n}$$

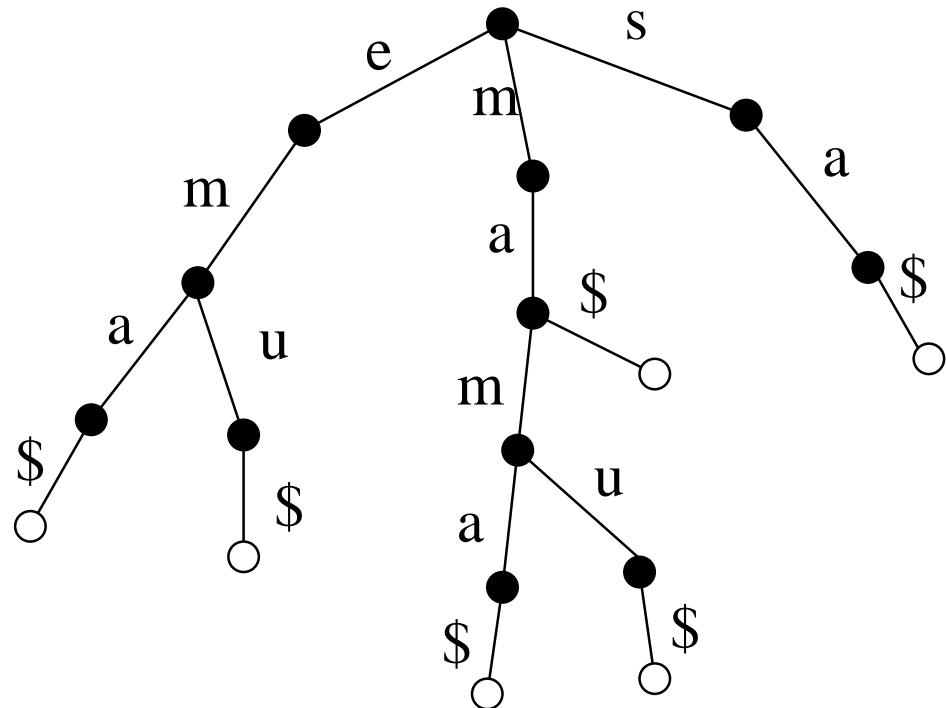
$$\omega_n^n = 1, \quad \omega_n^{n/2} = -1$$

$$\omega_{n/2} = \omega_n^2, \quad \omega_n^{2j} = \omega_{n/2}^j$$

Fast Fourier transform

```
1 complex FFT(A,n) {  
2     if n=1, return (A[0]);  
3     A1 = A[0,2,4,...,n-2];    Y1 = FFT(A1);  
4     A2 = A[1,3,5,...,n-1];    Y2 = FFT(A2);  
5     omega = cos(2*pi/n) + i* sin(2*pi/n);  
6     x = 1;  
7     for(int j=0; j<n/2; j++) {  
8         Y[j] = Y1[j] + x*Y2[j];  
9         Y[j+n/2] = Y1[j] - x*Y2[j];  
10        x = omega*x;  
11    }  
12    return Y;  
13 }
```

Recall: trie (lexikografický strom)



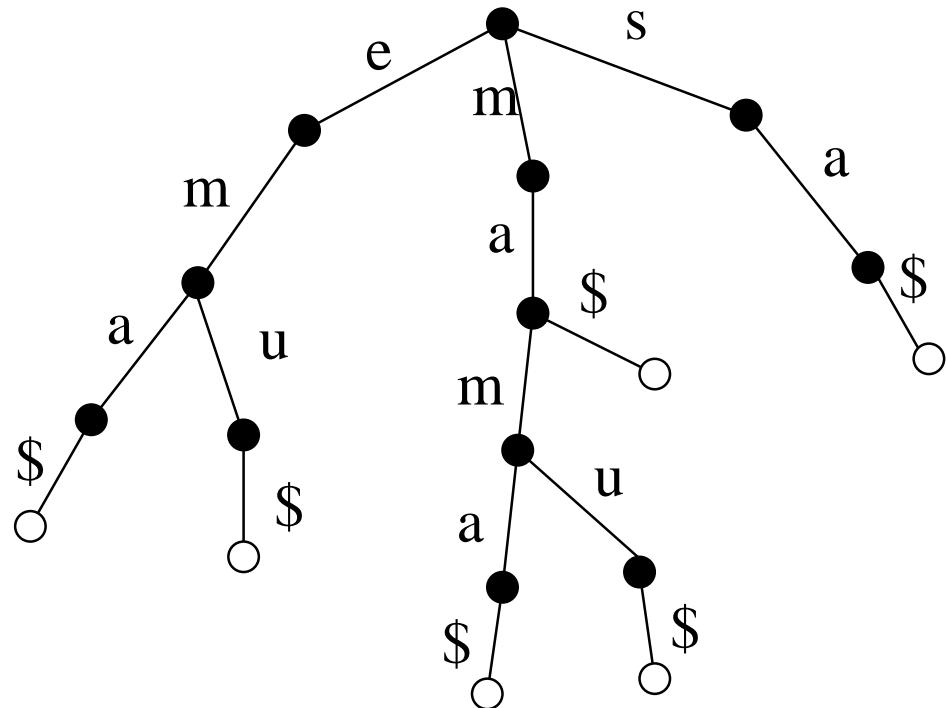
Represents a set of words, e.g. {ema, emu, ma, mama, mamu, sa}

Modification: add special symbol \$ to the end of each word

Leafs: words in the set (may store additional info)

Internal nodes: prefixes of words in the set

Recall: trie (lexikografický strom)



Insert, delete, search $O(m)$ where m is the length of the word

For large alphabets $O(m \log \sigma)$

Applications of tries

Work with individual words:

- Keyword search
- Spell-checking
- Counting word frequencies (homework)

Also used in multiple pattern search (Aho-Corasick)

and LZW compression

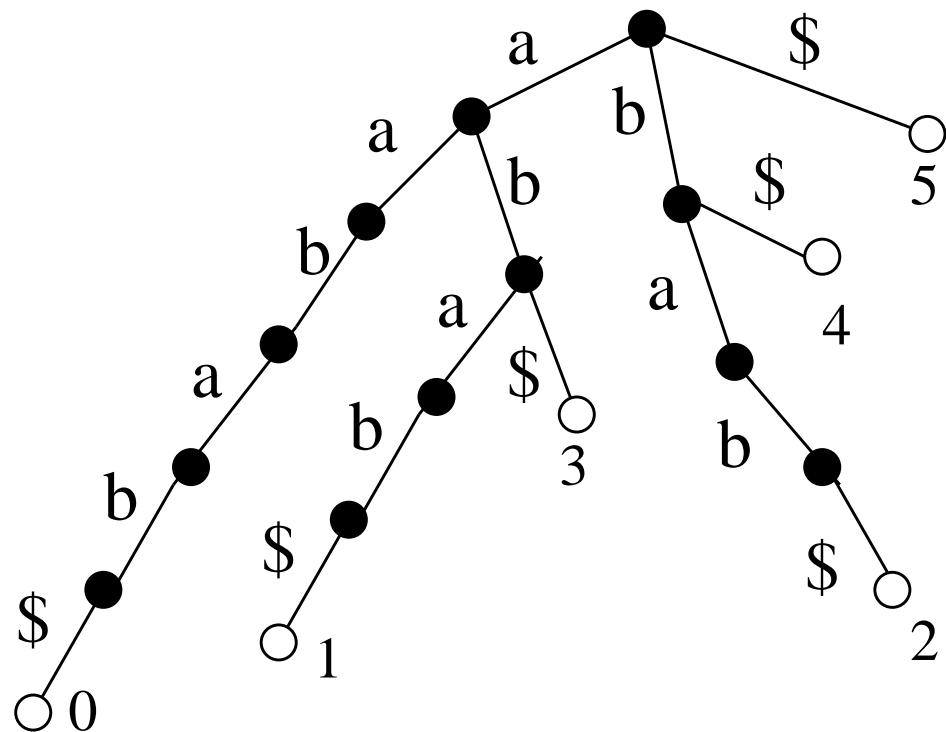
What about the following problems?

Given a set of words $\mathcal{S} = \{S_1, \dots, S_z\}$:

- Find the longest word w which is a prefix of at least two words in \mathcal{S}
- Find the longest word w which is a substring of at least two words in \mathcal{S}
- Simpler: Find the longest word w which occurs at least twice in a string T

Suffix tree (sufixový strom)

Trie of all suffixes of a string, e.g. T =aabab\$

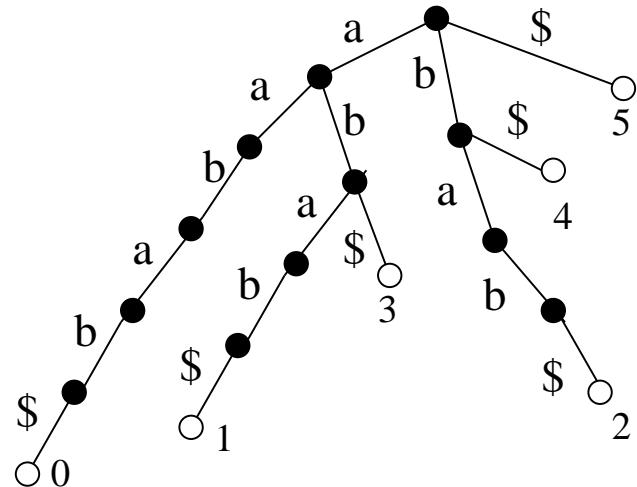
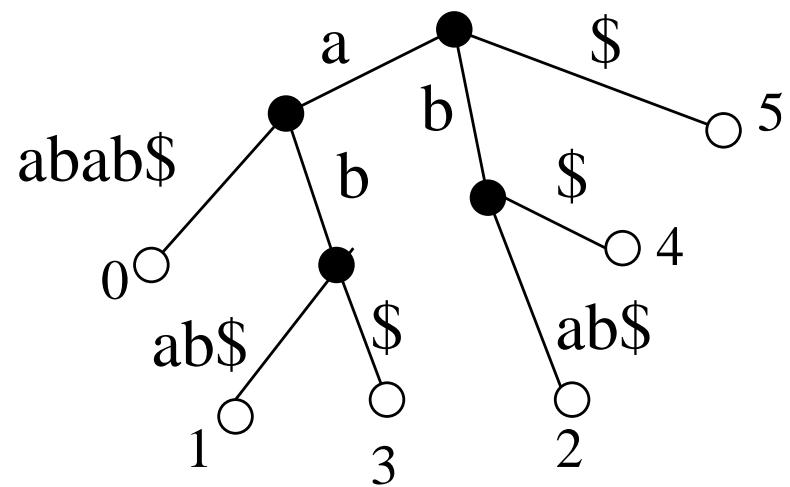


How many nodes in the tree?

Suffix tree

Compact all non-branching paths

T =aabab\$

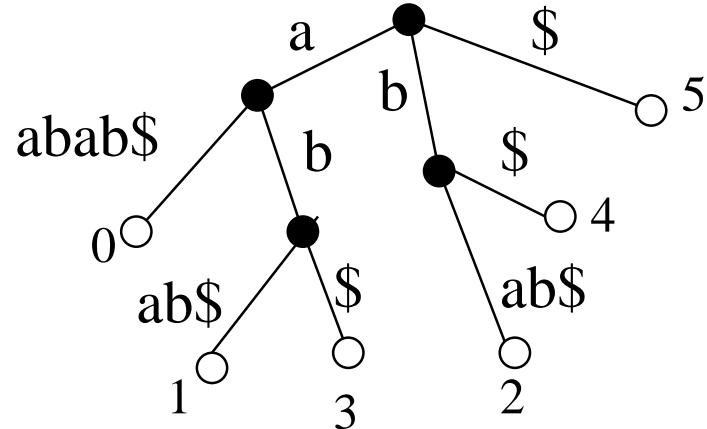
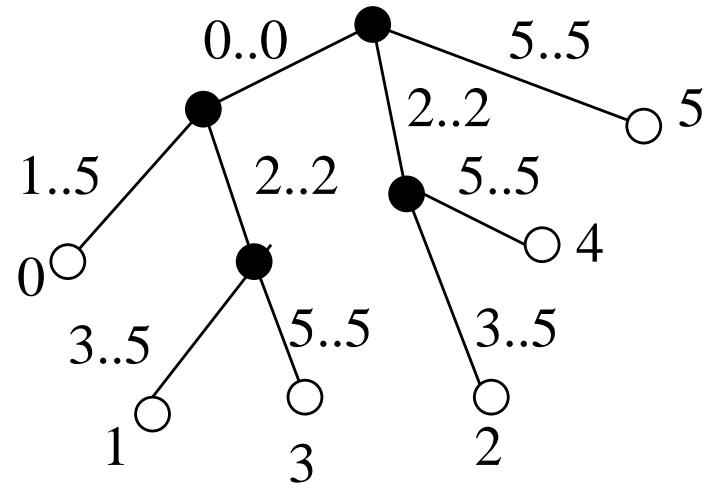


How many nodes in the new tree?

Suffix tree

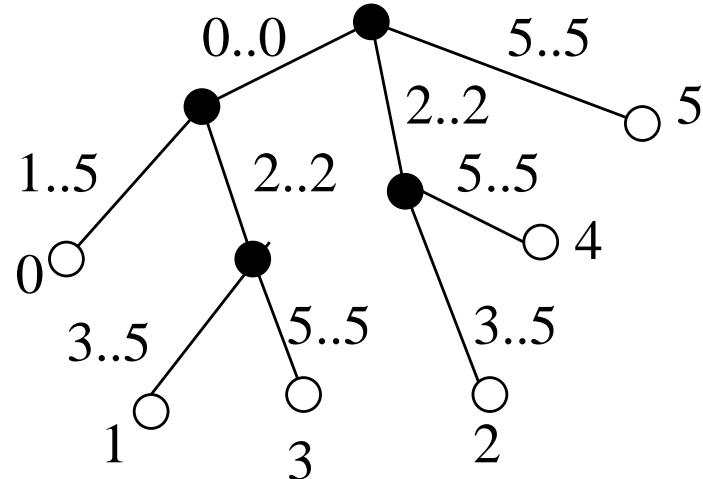
Store indices to T instead of substrings

$T = aabab\$$



Edges from one node start with different characters.

Suffix tree



Each node:

- pointer to parent
- indices of substring for edge to parent
- suffix start (in a leaf)
- pointers to children (in an internal node)
- other data, e.g. string depth

$O(n)$ nodes, construct in $O(n)$ time for constant σ