Organiza cné poznamky
e DU na stranke, termin do stredy pred Velkou nocou (27.3.)

e Temy nepovinneho projektu do konca marca

Regular expressions, summary

e Thompson’s algorithm 1968
— parse R to a tree with m nodes
— create NFA for L(R) with < 2m states and < 4m transitions
— simulate NFA on T in O(nm) time

e DFA: O(m?02™ 4+ n)

e Other approaches: hybrid of NFA and DFA, prefiltering, bit parallelism,

Patterns with wildcards

Special character * matches any character from 2

E.g. aa*b matches aaab, aabb, aach,. ..

Trivial algorithm O (nm)

Shift-and O(n + m + o) from small m, BNDM good in average case
Suffix trees O (nk) where K is the number of wildcards

Algorithm using FFT O(n log m)

— represent characters as numbers {1,2, ..., o}, wildcard as 0

— for each i compute a; = Z}l? PGITA +31(PG] — TH +3])?
— expression similar to multiplying polynomials P and TR

— occurrences of P have a; = 0

— trick with cutting T to overlapping windows of length 2m

Polynomial multiplication by Fast Fourier Transform (FFT)

Input: Two polynomials

A(x) = E 3 apxs

B(x) = k:O bkx

Goal: Compute product C(x) = A(x)B(x)
Zinoz cix’

Ck = Z) —0 ajbi

(define bj = 0ifj <Oorj > n)

Trivial algorithm: O(n?)
FFT: O(nlogn)

Polynomial multiplication by FFT

—find . = 2¥ so that A (x)B(x) has degree < n

— pad coefficients of A and B to length n

— compute A(wjﬁ) forj =0...n—1byFFT

— compute B(w%.l) forj=0...n—1DbyFFT

— compute C(wh) = A(wh)B(w) forallj in O(n)
— convert C(x) back to coefficient form by FFT

Use nth complex root of unity:
Wn, = e¥™/M = cos(27t/n) + isin(27t/n)

Useful facts:

j (i4j) mod n
W wn — Wn
n/2

Wy = w2, wd=w
n/2 — Wny n — %an

© 00 N oo o b~ w N PP

10
11
12
13

Fast Fourier transform

complex FFT(A,n) {
if n=1, return (A[O0]);
Al = A[0,2.,4,...,n—=2]; Y1l = FFT(Al);
A2 = A[1,3,5,...,n—1]; Y2 = FFT(A2);
omega = cos(2*pi/n) + ix sin(2xpi/n);
X = 1;
for (int j=0; j<n/2; j++) {
Y[j1 = YL[j] + x*Y2[j];
Y[j+n/2] = Y1[j] — x*Y2[j];
X = omegaxx;
}

return Y;

Recall: trie (Iexikograficky strom)

Represents a set of words, e.g. {ema, emu, ma, mama, mamu, sa}
Modification: add special symbol $ to the end of each word
Leafs: words in the set (may store additional info)

Internal nodes: prefixes of words in the set

Recall: trie (Iexikograficky strom)

Insert, delete, search O(m) where is the length of the word

For large alphabets O(m log o)

Applications of tries

Work with individual words:
e Keyword search
e Spell-checking
e Counting word frequencies (homework)

Also used in multiple pattern search (Aho-Corasick)

and LZW compression

What about the following problems?
Given a set of words S = {S1,...,S,}:
e Find the longest word W which is a prefix of at least two words in S
e Find the longest word W which is a substring of at least two words in S

e Simpler: Find the longest word w which occurs at least twice in a

string T

10

Suffix tree (sufixovy strom)

Trie of all suffixes of a string, e.g. | —aabab$

How many nodes in the tree?

11

Suffix tree

Compact all non-branching paths
T —aabab$

How many nodes in the new tree?

12

Suffix tree

Store indices to T instead of substrings
T —aabab$

Edges from one node start with different characters.

13

Suffix tree
0..0

Each node:

— pointer to parent

— indices of substring for edge to parent
— suffix start (in a leaf)

— pointers to children (in an internal node)

— other data, e.g. string depth

O(n) nodes, construct in O(n) time for constant o

14

