
Organiza čné poznámky

• DÚ na stránke, termín do stredy pred Vel’kou nocou (27.3.)

• Témy nepovinného projektu do konca marca

1

Regular expressions, summary

• Thompson’s algorithm 1968

– parse R to a tree with m nodes

– create NFA for L(R) with ≤ 2m states and ≤ 4m transitions

– simulate NFA on T in O(nm) time

• DFA: O(m2σ2m + n)

• Other approaches: hybrid of NFA and DFA, prefiltering, bit parallelism,

. . .

2

Patterns with wildcards

• Special character * matches any character from Σ

• E.g. aa*b matches aaab, aabb, aacb,. . .

• Trivial algorithm O(nm)

• Shift-and O(n+m+ σ) from small m, BNDM good in average case

• Suffix trees O(nk) where k is the number of wildcards

• Algorithm using FFT O(n logm)

– represent characters as numbers {1, 2, . . . , σ}, wildcard as 0

– for each i compute ai =
∑m−1

j=0 P[j]T [i+ j](P[j] − T [i+ j])2

– expression similar to multiplying polynomials P and TR

– occurrences of P have ai = 0

– trick with cutting T to overlapping windows of length 2m

3

Polynomial multiplication by Fast Fourier Transform (FFT)

Input: Two polynomials

A(x) =
∑n−1

k=0 akx
k

B(x) =
∑n−1

k=0 bkx
k

Goal: Compute product C(x) = A(x)B(x)

C(x) =
∑2n−2

k=0 ckx
k

ck =
∑n−1

j=0 ajbk−j

(define bj = 0 if j < 0 or j ≥ n)

Trivial algorithm: O(n2)

FFT: O(n logn)

4

Polynomial multiplication by FFT

– find n = 2k so that A(x)B(x) has degree < n

– pad coefficients of A and B to length n

– compute A(ω
j
n) for j = 0 . . . n− 1 by FFT

– compute B(ω
j
n) for j = 0 . . . n− 1 by FFT

– compute C(ω
j
n) = A(ω

j
n)B(ω

j
n) for all j in O(n)

– convert C(x) back to coefficient form by FFT

Use nth complex root of unity:

ωn = e2πi/n = cos(2π/n) + i sin(2π/n)

Useful facts:

ωi
nω

j
n = ω

(i+j) mod n
n

ωn
n = 1, ω

n/2
n = −1

ωn/2 = ω2
n, ω

2j
n = ω

j
n/2

5

Fast Fourier transform

1 complex FFT(A, n) {

2 i f n=1 , return (A [0]) ;

3 A1 = A [0 , 2 , 4 , . . . , n−2]; Y1 = FFT(A1) ;

4 A2 = A [1 , 3 , 5 , . . . , n−1]; Y2 = FFT(A2) ;

5 omega = cos(2∗ p i / n) + i∗ s in (2∗ p i / n) ;

6 x = 1 ;

7 for (i n t j =0; j <n / 2 ; j ++) {

8 Y[j] = Y1 [j] + x∗Y2 [j] ;

9 Y [j +n / 2] = Y1 [j] − x∗Y2 [j] ;

10 x = omega∗x ;

11 }

12 return Y;

13 }

6

Recall: trie (lexikografický strom)

a u

m

a

s

a
a

u

m

m

e

$
$

$ $

$ $

Represents a set of words, e.g. {ema, emu, ma, mama, mamu, sa}

Modification: add special symbol $ to the end of each word

Leafs: words in the set (may store additional info)

Internal nodes: prefixes of words in the set

7

Recall: trie (lexikografický strom)

a u

m

a

s

a
a

u

m

m

e

$
$

$ $

$ $

Insert, delete, search O(m) where is the length of the word

For large alphabets O(m logσ)

8

Applications of tries

Work with individual words:

• Keyword search

• Spell-checking

• Counting word frequencies (homework)

Also used in multiple pattern search (Aho-Corasick)

and LZW compression

9

What about the following problems?

Given a set of words S = {S1, . . . , Sz}:

• Find the longest word w which is a prefix of at least two words in S

• Find the longest word w which is a substring of at least two words in S

• Simpler: Find the longest word w which occurs at least twice in a

string T

10

Suffix tree (sufixový strom)

Trie of all suffixes of a string, e.g. T =aabab$

a
a

b

$

b
$

$

b

a

$

a

b
$

a

b

b

$
2

3

4

5

0
1

How many nodes in the tree?

11

Suffix tree

Compact all non-branching paths

T =aabab$

a
a

b

$

b
$

$

b

a

$

a

b
$

a

b

b

$
2

3

4

5

0
1

a
b

$

$

abab$ b

ab$

21 3

$
4

5

0
ab$

How many nodes in the new tree?

12

Suffix tree

Store indices to T instead of substrings

T =aabab$

a
b

$

$

abab$ b

ab$

21 3

$
4

5

0
ab$

21 3

4

5

0
3..5

5..5

3..55..5

1..5

0..0

2..2 5..5
2..2

Edges from one node start with different characters.

13

Suffix tree

21 3

4

5

0
3..5

5..5

3..55..5

1..5

0..0

2..2 5..5
2..2

Each node:

– pointer to parent

– indices of substring for edge to parent

– suffix start (in a leaf)

– pointers to children (in an internal node)

– other data, e.g. string depth

O(n) nodes, construct in O(n) time for constant σ

14

