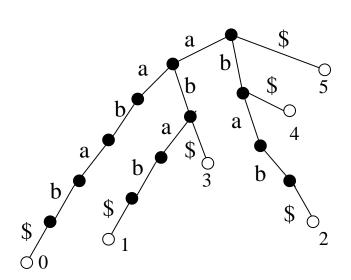
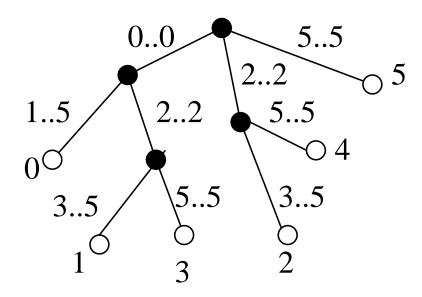
Suffix tree

Trie of all suffixes of a string, e.g. T = aabab\$

Compact all non-branching paths — get a tree with $O(\mathfrak{n})$ nodes





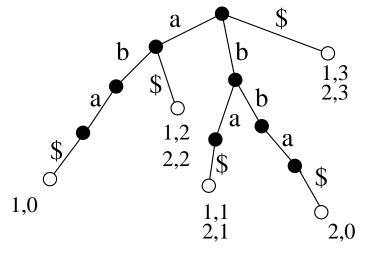
Generalized suffix tree

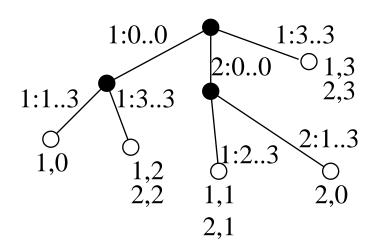
Store suffixes of several strings $\{S_1, \ldots, S_z\}$

Each leaf a list of suffixes

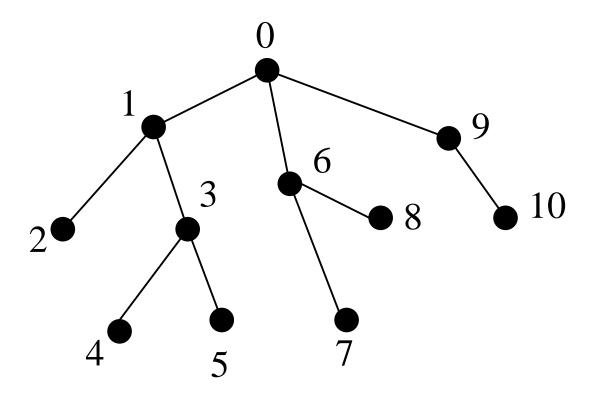
Each edge i and indices to some S_i

Example: $S_1 = aba\$$, $S_2 = bba\$$:





Lowest common ancestor (LCA), najnižší spoločný predok



 ν is ancestor of $\mathfrak u$ if it is on the path from $\mathfrak u$ to the root $lca(\mathfrak u, \nu)$: node of greatest depth in ancestors($\mathfrak u$) \cap ancestors($\mathfrak v$)

Next time: preprocess tree T in O(n), answer lca(u, v) in O(1)

Applications of suffix trees

- Index text for string matching
- Find longest substring with at least two occurrences
- Find longest words which occurs in at least 2 documents
- Find all maximal repeats

With LCA

- Find maximal palindromes
- Find approximate matches under Hamming distance
- Find pattern with wildcards
- Count in how many documents word occurs

Optional homework

Given string S and k > 1. For each i find the longest prefix of S[i..n-1] that occurs at least k times in S.

Goal: O(n) time in total

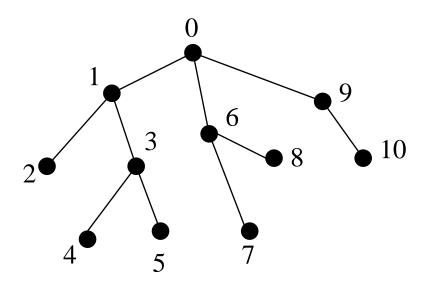
Example:

Assume for each node we know its string depth d(u) and the number of leaves in its subtree l(u)

Optional homework

```
search(root, 0, k);
   void search(node v, int value, int k) {
       if (??) {
 3
         value = ??;
4
 5
       if (v.is_leaf()) { a[v.id] = value; }
6
       else {
7
         foreach child w of v {
8
            search(w, value, k);
9
10
11
12
```

Lowest common ancestor (LCA)



Task: preprocess tree T in O(n), answer lca(u, v) in O(1)

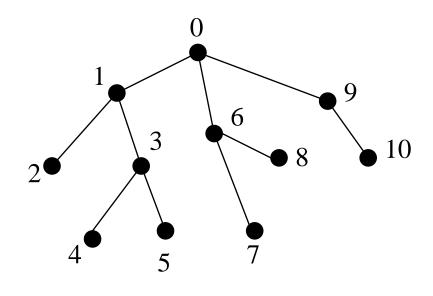
Harel and Tarjan 1984, Schieber a Vishkin 1988 (Gusfield book, notes), Bender and Farach-Colton 2000 (this lecture)

Trivial solutions:

- no preprocessing, O(n) time per lca
- $-O(n^3)$ preprocessing, $O(n^2)$ memory, O(1) time per lca

Lowest common ancestor (LCA)

Preprocess tree to arrays V, D, R



V – visited nodes

D – their depths

R – first occurrence of node in V

	i:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
•	V:	0	1	2	1	3	4	3	5	3	1	0	6	7	6	8	6	0	9	10	9	0
[D:	0	1	2	1	2	3	2	3	2	1	0	1	2	1	2	1	0	1	2	1	0
-	R:	0	1	2	4	5	7	11	12	14	17	18										

Lowest common ancestor (LCA)

```
search(root, 0);
   void search(node v, int depth) {
2
     R[v] = V.size;
3
     V.push_back(v);
4
     D.push_back(depth);
5
     foreach child u of v {
6
         search(u, depth+1);
7
        V.push_back(v);
8
9
        D.push_back(depth);
10
11
```

LCA algorithm overview

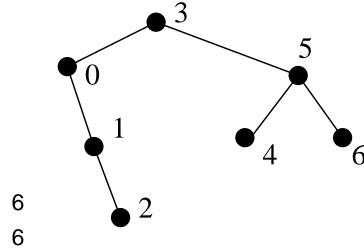
- Compute arrays V,D,R by depth-first search in the tree
- Enumerate all possible +1,-1 blocks of length $\mathfrak{m}-1$, precompute answers for all intervals in each type
- Split D into blocks of length $m = \log_2(n)/2$, precompute minimum and its index in each block (A', M'), find type of each block
- Precompute $O(n' \log n')$ data structure for RMQ in A'
- For lca(u, v) a query:
 - i = R[u], j = R[v], find position k of minimum in D[i..j] as follows:
 - find block b_i containing i, block b_j containing j
 - compute minimum in $b_i \cap [i,j]$, $b_j \cap [i,j]$
 - compute minimum in $A'[b_{i+1} \dots b_{j-1}]$
 - find minimum of three numbers, let k be its index in D return V[k]

RMQ using LCA

Cartesian tree for A: root: minimum in A (at position k)

left subtree: recursively for A[1..k-1]

right subtree: recursively for A[k+1..n]



A o Cartesian tree in O(n): add elements from left to right $\min A[i..j] = lca(i,j)$

RMQ using **LCA**

```
Use auxiliary value \alpha[-1] = -\infty
    root = new node(-1, null);
 2
   r = root;
    for (int i = 0; i < n; i ++) {</pre>
 3
      while(a[r.id]>a[i]) {
 4
 5
        r = r.parent;
 6
 7
     v = new node(i, r);
      v.left = r.right;
 8
 9
      r.right = v;
10 	 r = v;
11 }
```