Lowest common ancestor (LCA)

Range minimum query (RMQ):

Alg.1 no preprocessing, O(n) query

Alg.2 $O(n^2)$ preprocessing, O(1) query

Alg.3 $O(n \log n)$ preprocessing, O(1) query

RMQ ± 1 : O(n) preprocessing, O(1) time split to blocks, use alg.2 within blocks, alg.3 between blocks many blocks repeat in input – save time

LCA: O(n) preprocessing, O(1) time use RMQ on array of depths in depth-first search

RMQ: O(n) preprocessing, O(1) time use LCA on Cartesian tree

Precomputing values over intervals

Operation \circ , compute $R_{\circ}(i,j) = A[i] \circ A[i+1] \circ \cdots \circ A[j]$

- Precompute all answers: $O(n^2)$ preprocessing, O(1) query
- Precompute prefix "sums" $R_{\circ}(0,i)$ good for groups (e.g. $\circ = +$ over Z,Q,R,etc.) $R_{\circ}(i,j) = R_{\circ}(0,j)) \circ R_{\circ}(0,i-1))^{-1}$ Optional HW: what about multiplication?
- Precompute log₂ n intervals for each i
 combine 2 overlapping answers e.g. for min
- Precompute non-overlapping intervals of sizes 2ⁱ
 combine several intervals to cover each element exactly once
 good for any associative o, e.g. matrix multiplication
 Optional HW: running time/memory?

Finding all small numbers

We have array A precomputed for RMQ.

For given i, j, x find all indices $k \in \{i, ..., j\}$ s.t. $A[k] \le x$.

```
1  void small(i,j,x) {
2   if(j>i) return;
3   k = rmq(i,j);
4   if(a[k]<=x) {
5     print k;
6     small(i,k-1);
7     small(k+1,j);
8   }
9  }</pre>
```

Running time? (as a function of p, the number of printed indices)

Printing documents

Preprocess texts $\{S_1, \ldots, S_z\}$

Query: which documents contain pattern P?

We can do O(m + k) where k =number of occurrences of P

Want O(m + p) where p =number of documents containing P

Array of leaves L in DFS order

For leaf L[i] let A[i] be the index of previous leaf from the same S_i

Occurrences of P: subtree of corresponding to interval [i, j] in L

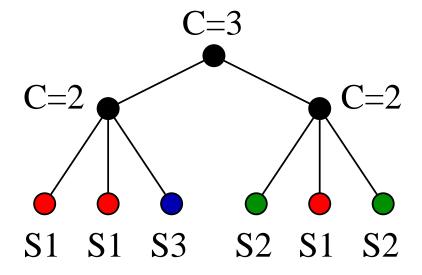
Find all $k \in [i, ..., j]$ that have A[k] < i

Running time? Preprocessing?

Recall: counting documents

Generalized suffix tree of $\{S_1, \ldots, S_z\}$

For each node C(v): how many different S_i in its subtree



Use:

- find longest string which is a substring of each $S_{\hat{\iota}}$
- how many S_i contain pattern P?

Trivial: O(nz); better: O(n) using LCA

Applications of suffix trees

- Index text for string matching
- Find longest substring with at least 2 occurrences
- Find longest words which occurs in at least 2 documents
- Find all maximal repeats

With LCA

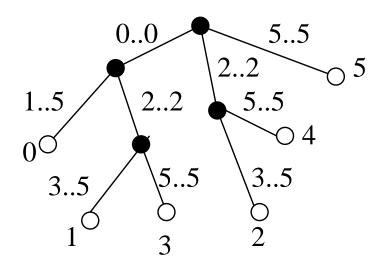
- Find maximal palindromes
- Find approximate matches under Hamming distance
- Find pattern with wildcards
- Count in how many documents pattern occurs

With RMQ

Print documents containing pattern

Summary: suffix trees

- Compact representation of all suffixes of a string
- They can be built in O(n) time (proof next week)
- They can answer interesting problems related to substring equality
- They need relatively large memory (several pointers/integers per character)



Suffix array

Array of suffixes in lexicographic order (assume $\$ < \alpha \quad \forall \alpha \in \Sigma$)

i	SA[i]	Suffix
0	6	\$
1	5	a\$
2	3	ana\$
3	1	anana\$
4	0	banana\$
5	4	na\$
6	2	nana\$

i	SA[i]	Suffix
0	4	\$
1	3	a\$
2	2	aa\$
3	1	aaa\$
4	0	aaaa\$

Suffix array

- Array of suffixes in lexicographic order
- Simpler structure, continuous memory
- Less memory: one index per character (4n bytes in total)
- Construction in O(n) even for large alphabets (next week)

Today: Search for pattern P in suffix array

String matching with suffix arrays

Given suffix array for text T (and possibly other structures), and pattern P, solve these three tasks:

- Task 1: Find out if P occurs in T (yes/no)
- Task 2: Count the number of occurrences of P in T
- Task 3: List all occurrences of P in T

Use binary search in SA that for string X finds highest i such that T[SA[i]..n] < X.

Binary search in suffix array: algorithm 1, $O(m \log n)$

```
//find max i such that T[SA[i]..n]< X
2 L = 0; R = n;
   while (L < R)
   k = (L + R + 1) / 2;
4
5
  if (T[SA[k]..n]<X){
  L = k;
6
7
  else {
8
    R = k - 1;
10 }
11
12
   return L;
```

Longest common prefix

- lcp(A, B) = the length of longest common prefix of strings A and B
- LCP(i,j) = lcp(T[SA[i]..n], T[SA[j]..n])
 i.e. lcp of two suffixes in a suffix array

Excercise

In one iteration we do lcp(X, T[SA[k]..n]) + 1 comparisons This can be any number between 1 and min(m, n + 1 - SA[k])

Find a bad case (lower bound) for any values $m, n \ge 2$.

Binary search in suffix array: algorithm 2, $O(m \log n)$

```
//find max i such that T[SA[i]..n—1]< X
2 L = 0; R = n;
   XL = Icp(X, T[SA[L]..n]); XR = Icp(X, T[SA[R]..n]);
   while (R - L > 1){
5
     k = (L + R + 1) / 2;
6
     h = min(XL, XR);
     while (T[SA[k]+h]==X[h]) { h++; }
7
8
     if(T[SA[k]+h]<X[h])\{L=k;XL=h;\}
     else { R = k; XR = h; }
9
10 }
   sequential search in SA[L..R];
11
```

Excercise

What is the number of comparisons for $T = ba^{n-1}$, $X = a^{n-1}$?

What is the number of comparisons for $T = a^n$, $X = a^{n-1}$?

Binary search in suffix array: algorithm 3, $O(m + \log n)$

Recall:
$$LCP(i,j) = lcp(T[SA[i]..n-1], T[SA[j]..n-1])$$

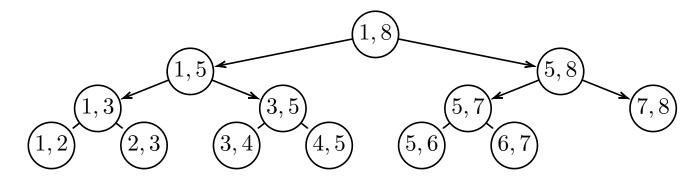
Comparing T[SA[k]..n] and X, assume $XL \ge XR$

- If LCP(L, k) > XL: set $L \leftarrow k$
- If LCP(L, k) < XL: set $R \leftarrow k$; $XR \leftarrow LCP(L, k)$;
- If LCP(L, k) = XL: start comparing at XL

Case XL < XR symmetrical to $XL \ge XR$

LCP values for algorithm 3

Which values are needed? LCP(L, k) or LCP(R, k)



2n-1 LCP values needed

Let L[i] = LCP(i, i + 1), precompute to an array in O(n) (later) For j - i > 1:

$$\begin{split} LCP(i,j) &= \min\{LCP(k,k+1) \,|\, k=i\ldots j-1\} \\ &= \min\{LCP(i,x),LCP(x,j)\} \text{ for any } x \in \{i+1,\ldots j-1\} \end{split}$$

Summary

Data structure	Search	# pointers/integers
Suffix tree	$O(m\log\sigma)$	7n or more
Suffix array	$O(m \log n)$	n
Suffix array + LCP	$O(m + \log n)$	3n

More memory needed in preprocessing stage.