Plan semestra

Dnes: Usporné datové Struktury, ivod do editacnej vzdialenosti

Zajtra: editacna vzdialenost, najdlhSia spoloCna podpostupnost

Do pondelka: vyber Clanku na prezentaciu

Streda 17.4.: zlepSenia vypoctu editaCnej vzdialenosti

Stvrtok 18.4.: prednaska nebude

Streda 24.4.: priblizné vyskyty vzorky, lokalne podobnosti, bioinformatika
Stvrtok 25.4.: zostavovanie DNA sekvencii, najkratsie spolo¢né nadslovo
Streda 1.5.: sviatok

Stvrtok 2.5.: viacnasobné zarovnanie, opakujlce sa sekvenéné motivy
Streda 8.5.: sviatok

Stvrtok 9.5.: prezentacie

Streda 15.5.: prezentacie

Stvrtok 16.5.: prezentacie

Succint data structures

e Data structure uses OPT 4+ o(OPT) bits of memory

and supports fast operations
e Rank and select on a binary vector of length . in O(1) time

e Wavelet tree supports rank over larger alphabet in O(log o) time,

uses binary rank

e FM index counts occurrences of pattern P in T in O(m log o) time,

uses BWT and wavelet tree
Today:
e Compressed data structures (for rank)

e Succint data structure for binary trees

Succint structure for rank and select

Bit vector A[0..n-1]
rank(i) = number of bits set to 1 in A[O..i]

select(i) = position of the i-th bit setto 1

Example:

i 0 1 2 3 4 5 6 7

Al 0 1 1 0 1 0 0 1

rank(3) = 2, rank(4) = 3
select(1) = 1, select(3) = 4

Goal:
rank, selectin O(1) time
structure needs n. 4+ o(mn) memory

we have concentrated on rank

Succint structure for rank
e Divide bit vector to superblocks of size t1 = Iog% n
e Divide each super block to blocks of size t; = % logr M

e Keep rank at each super block boundary
O(% .logn) = O(n/logn) = o(n) bits

e Keep rank within super block at each block boundary
O(% -logt;) = O(nloglogn/logn) = o(n) bits

e Each block stored as a binary number using t, bits

N bits

e For each of 2*2 possible blocks and each query keep the answer
O(2% - t; - logt;) = O(y/nlognloglogn) = o(n) bits

Compressed structure for rank (Raman, Raman, Rao 2002)

Compressed size of bit vector + o(n) bits

Need to reduce the following part:

Each block stored as a binary number using t, bits
Blocks with many 0s or many 1s stored using fewer bits

For each block store the number of 1s

O(% logty) = O(nloglogn/logn) = o(n) bits

For a block with x 1s store its index in lexicographic order
of all binary strings of size 1, with X 1s
[llog, ()] < log, 22 = t; bits

overall at most %tz — M bits

Also rearrange the table with answers for all possible blocks of size t;

Compressed structure for rank (RRR)
th=3

1s I ndex Size Bl ock Answers

0 0 0 000 00O
1 0 2 001 001
1 010 011
2 100 111
2 0 2 011 012
1 101 112
2 110 1 2 2
3 0 0 111 1 2 3

Original bits: 000|101|001]111]111

Number of 1s in each block: 00|10(01]|11|11

Index of block: €|01|00|e|e

Where each block starts: 0000/0000(0010|0100|0100

Analysis of RRR structure
e Let S be a string in which a € X occurs ng times

e Its entropy is H(S) = Z 2 log; nla

an

e H(S) < log, 0 (lower if some characters more frequent than others)

e RRR structure for bit vector B uses nH(B) + o(n) bits

Stirling’s approximation of m!
n!=+2m (2)" (1+0(1/n))
In(n!) =nin(n) —m+ O(In(n))

Uses of RRR structure

e Store binary rank structures in the wavelet tree for text T

overall nH(T) + o(nH(T)) bits

e Instead of wavelet tree, store indicator vector for each a € X
overall NH(T) + oo (n) bits
O(1) per rank query

e FM index needs rank in BWT of T, which might be even better

compressible

Succint binary trees

Consider all binary trees with n nodes

OPT is cca 2n bits (proof later)

Use 2n + o(n) memory

Support operations left child, right child, parentin O(1)

Nodes are numbers from{1,...,2n + 1}
Using rank can be mappedto{1,...,n}

These can be then used as indices to arrays with additional data

Can be part of binary tries, binary suffix trees

Extensions to larger alphabets exist
Static trees only, construction requires more memory

Classical trees with pointers use ()(n log n) bits

Succint binary trees: level order representation

10

Equivalence of binary trees and rooted ordered trees
Rooted ordered tree as a well-parenthesized expression:

(CCON OO 0))
* ABDDBEGGEHHACCK F*

11

Counting well-parenthesized expresions

Example: |X(3,3,—00) \ X(3,3,0)] = |X(2,4,—o0)| = 15
|X(3>3>_OO)| = 20
1X(3,3,0)] =20—15=5 = C3

First four examples out of 15:
)))«))))

12

