
Plán semestra

Dnes: úsporné dátové štruktúry, úvod do editačnej vzdialenosti

Zajtra: editačná vzdialenost’, najdlhšia spoločná podpostupnost’

Do pondelka: výber článku na prezentáciu

Streda 17.4.: zlepšenia výpočtu editačnej vzdialenosti

Štvrtok 18.4.: prednáška nebude

Streda 24.4.: približné výskyty vzorky, lokálne podobnosti, bioinformatika

Štvrtok 25.4.: zostavovanie DNA sekvencií, najkratšie spoločné nadslovo

Streda 1.5.: sviatok

Štvrtok 2.5.: viacnásobné zarovnanie, opakujúce sa sekvenčné motívy

Streda 8.5.: sviatok

Štvrtok 9.5.: prezentácie

Streda 15.5.: prezentácie

Štvrtok 16.5.: prezentácie

1

Succint data structures

• Data structure uses OPT + o(OPT) bits of memory

and supports fast operations

• Rank and select on a binary vector of length n in O(1) time

• Wavelet tree supports rank over larger alphabet in O(logσ) time,

uses binary rank

• FM index counts occurrences of pattern P in T in O(m logσ) time,

uses BWT and wavelet tree

Today:

• Compressed data structures (for rank)

• Succint data structure for binary trees

2

Succint structure for rank and select

Bit vector A[0..n-1]

rank(i) = number of bits set to 1 in A[0..i]

select(i) = position of the i-th bit set to 1

Example:

i 0 1 2 3 4 5 6 7

A[i] 0 1 1 0 1 0 0 1

rank(3) = 2, rank(4) = 3

select(1) = 1, select(3) = 4

Goal:

rank, select in O(1) time

structure needs n+ o(n) memory

we have concentrated on rank

3

Succint structure for rank

• Divide bit vector to superblocks of size t1 = log22 n

• Divide each super block to blocks of size t2 =
1
2

log2 n

• Keep rank at each super block boundary

O(n
t1

· logn) = O(n/ logn) = o(n) bits

• Keep rank within super block at each block boundary

O(n
t2

· log t1) = O(n log logn/ logn) = o(n) bits

• Each block stored as a binary number using t2 bits

n bits

• For each of 2t2 possible blocks and each query keep the answer

O(2t2 · t2 · log t2) = O(
√
n logn log logn) = o(n) bits

4

Compressed structure for rank (Raman, Raman, Rao 2002)

• Compressed size of bit vector + o(n) bits

• Need to reduce the following part:

Each block stored as a binary number using t2 bits

• Blocks with many 0s or many 1s stored using fewer bits

• For each block store the number of 1s

O(n
t2

log t2) = O(n log logn/ logn) = o(n) bits

• For a block with x 1s store its index in lexicographic order

of all binary strings of size t2 with x 1s

⌈log2
(

t2
x

)

⌉ ≤ log2 2
t2 = t2 bits

overall at most n
t2
t2 = n bits

• Also rearrange the table with answers for all possible blocks of size t2

5

Compressed structure for rank (RRR)

t2 = 3

1s Index Size Block Answers
0 0 0 000 0 0 0
1 0 2 001 0 0 1

1 010 0 1 1
2 100 1 1 1

2 0 2 011 0 1 2
1 101 1 1 2
2 110 1 2 2

3 0 0 111 1 2 3

Original bits: 000|101|001|111|111

Number of 1s in each block: 00|10|01|11|11

Index of block: ǫ|01|00|ǫ|ǫ

Where each block starts: 0000|0000|0010|0100|0100

6

Analysis of RRR structure

• Let S be a string in which a ∈ Σ occurs na times

• Its entropy is H(S) =
∑

a
na

n
log2

n
na

• H(S) ≤ log2σ (lower if some characters more frequent than others)

• RRR structure for bit vector B uses nH(B) + o(n) bits

Stirling’s approximation of n!

n! =
√
2πn

(

n
e

)n
(1 +O(1/n))

ln(n!) = n ln(n) − n +O(ln(n))

7

Uses of RRR structure

• Store binary rank structures in the wavelet tree for text T

overall nH(T) + o(nH(T)) bits

• Instead of wavelet tree, store indicator vector for each a ∈ Σ

overall nH(T) + σo(n) bits

O(1) per rank query

• FM index needs rank in BWT of T , which might be even better

compressible

8

Succint binary trees

• Consider all binary trees with n nodes

• OPT is cca 2n bits (proof later)

• Use 2n + o(n) memory

• Support operations left child, right child, parent in O(1)

• Nodes are numbers from {1, . . . , 2n + 1}

Using rank can be mapped to {1, . . . , n}

These can be then used as indices to arrays with additional data

• Can be part of binary tries, binary suffix trees

Extensions to larger alphabets exist

• Static trees only, construction requires more memory

• Classical trees with pointers use Ω(n logn) bits

9

Succint binary trees: level order representation

A

B C

D E F

G H

10

Equivalence of binary trees and rooted ordered trees

A

B C

D E F

G H

A C F

B E H

GD

*

Rooted ordered tree as a well-parenthesized expression:

(((())(())())()())

ABDDBEGGEHHACCFF

11

Counting well-parenthesized expresions

Example: |X(3, 3,−∞) \ X(3, 3, 0)| = |X(2, 4,−∞)| = 15

|X(3, 3,−∞)| = 20

|X(3, 3, 0)| = 20− 15 = 5 = C3

First four examples out of 15:
))) ((() (()))

-4
-3
-2
-1
0
1
2

)) () (() () ())

-4
-3
-2
-1
0
1
2

)) (() () ()) ()

-4
-3
-2
-1
0
1
2

)) ((()) ())) (

-4
-3
-2
-1
0
1
2

12

