
Finding Patterns in Biological Sequences

Broňa Brejová, Chrysanne DiMarco, Tomáš Vinař
Department of Computer Science

University of Waterloo

Sandra Romero Hidalgo
Department of Statistics
University of Waterloo

Gina Holguin, Cheryl Patten
Department of Biology
University of Waterloo

Project report for CS798g, Fall 2000

Abstract

In this report we provide an overview of known techniques for discovery of patterns of biological sequences
(DNA and proteins). We also provide biological motivation, and methods of biological verification of such
patterns. Finally we list publicly available tools and databases for pattern discovery. On-line supplement
is available through http://genetics.uwaterloo.ca/∼tvinar/cs798g/motif.

Contents

1 Introduction 3

2 Biological Motivation for Pattern Discovery 3

2.1 Pattern discovery in proteins . 3
2.2 Pattern discovery in non-coding regions . 5
2.3 Tandem Repeats . 7

3 Algorithms 7

3.1 Introduction . 7
3.1.1 Computer science questions . 7
3.1.2 Input sequences . 8
3.1.3 Types of patterns . 8

3.2 Exhaustive search . 10
3.2.1 Enumerating all patterns. 10
3.2.2 Exhaustive search on graphs . 12

3.3 Creating long patterns from short patterns . 14
3.3.1 TEIRESIAS algorithm . 14
3.3.2 Work related to TEIRESIAS algorithm . 16

3.4 Iterative heuristic methods . 16
3.4.1 Gibbs sampling . 16
3.4.2 Other iterative methods . 18
3.4.3 From iteration to PTAS . 18

3.5 Machine learning methods . 19
3.5.1 Expectation maximization . 19
3.5.2 Hidden Markov models . 20
3.5.3 Improvements of HMM models . 22

3.6 Methods using additional information . 22
3.6.1 Finding motifs in aligned sequences . 22
3.6.2 Global properties of a sequence . 23
3.6.3 Using phylogenetic tree . 23
3.6.4 Use of secondary/tertiary structure . 24

1

http://genetics.uwaterloo.ca/~tvinar/cs798g/motif

3.7 Finding Tandem Repeats . 25

4 Statistical Significance 25

4.1 z-score . 25
4.2 Information content . 26
4.3 Sensitivity, specificity and related measures . 27

5 Biological Verification 27

6 Success Stories 29

6.1 Tuberculosis . 29
6.2 Coiled coils in histidine kinases . 29
6.3 Conclusion . 29

7 Conclusion 30

References 30

A Publicly Available Software Tools 34

B Databases of Patterns and Motifs 41

B.1 Databases of protein domains . 41
B.2 Databases of transcription factors . 47
B.3 Other databases . 49

2

1 Introduction

The goal of our project was to study known tech-
niques for discovering patterns in biological se-
quences. Patterns we want to find usually corre-
spond to functionally or structurally important el-
ements in proteins or DNA sequences. There is an
assumption that these important regions are bet-
ter conserved in evolution and therefore they occur
more frequently than expected. Pattern discovery is
one of the fundamental problems in bioinformatics.
It can be used in multiple sequence alignment, pro-
tein structure and function prediction, characteriza-
tion of protein families, promoter signal detection,
and other areas.

Introduction to the problem and biological moti-
vation of motif discovery can be found in Section
2.

Section 3 gives overview of known algorithms.
We have concentrated on the problem of discov-
ering previously unknown patterns. From biolog-
ical point of view it is equally important to have
tools for finding known patterns in new sequences,
however this is usually not so interesting from algo-
rithmic point of view. Therefore we touch on this
issue only lightly in cases when it is not obvious.
We also do not try to compare individual methods
based on their performance or their ability to find
most relevant patterns. The reason is that individ-
ual approaches vary widely in the type of pattern
they try to find, performance guarantees and so on.
Even authors of experimental comparative studies
such as [Hudak and Mcclure, 1999] have difficulties
to determine which method performed better on a
given dataset. It is impossible to do so based only
on descriptions of algorithms. Still we have tried to
choose such algorithms to our study that seem to
contain most interesting ideas.

Patterns found by algorithms may or may not be
the patterns which we really want to find. Sections
4, and 5 provide means how to assess quality of the
found patterns. In particular, section 4 discusses
measures of statistical significance of a pattern and
section 5 shows how to verify patterns using biolog-
ical experiments.

To illustrate importance of pattern finding meth-
ods we included a few examples where such software
tools led to new biological discoveries (section 6).

Finally, section 7 closes our discussion, and ap-
pendices A and B include list of publicly available
software tools for motif discovery and databases of
motifs.

2 Biological Motivation for
Pattern Discovery

Nucleotide and protein sequences contain patterns
or motifs that have been preserved through evolu-
tion because they are important to the structure or
function of the molecule. In proteins, these con-
served sequences may be involved in the binding of
the protein to its substrate or to another protein,
may comprise the active site of an enzyme or may
determine the three dimensional structure of the
protein. Nucleotide sequences outside of coding re-
gions in general tend to be less conserved among or-
ganisms, except where they are important for func-
tion, that is, where they are involved in the regula-
tion of gene expression. Discovery of motifs in pro-
tein and nucleotide sequences can lead to determi-
nation of function and to elucidation of evolutionary
relationships among sequences.

2.1 Pattern discovery in proteins

With the accumulation of nucleotide sequences for
the entire genomes of many different organisms,
comes the need to make sense out of all of the
information. Attempts have been made to or-
ganize all of the proteins encoded in these ge-
nomic sequences into families based on the presence
of common signature sequences [Linial et al., 1997,
Rigoutsos et al., 1999]. Members of protein fam-
ilies are often characterized by more than one
motif (on average each family has 3-4 conserved
regions) which increases the certainty that a
protein has been assigned to a correct family
[Nevill-Manning et al., 1998]. Hierarchical trees of
protein clusters often reveal functional and evolu-
tionary relationships among proteins. Starting with
a single ”seed” sequence, protein families can be
characterized in order to find ancient ancestor se-
quences [Neuwald et al., 1997]. First, proteins re-
lated to a query sequence are found by searching
the databases for similar sequences. Sequences re-
vealed from this initial screen are then used as query
sequences to search for other family members and
the process is repeated to exhaustion. All of the se-
quences are aligned in order to identify conserved
regions which are used to generate models that rep-
resent ancient conserved regions. The rationale be-
hind this approach is that if protein A is related
to protein B, and B is related to C, then A is also
related to C. Model refinement parallels divergent
evolution in that each subsequent alignment reveals
progressively more distant relatives.

3

By this method, proteins are assigned to a family
based on sequence homology as determined primar-
ily by alignment. If an alignment finds homology be-
tween a query protein and a particular family of pro-
teins, a phylogenetic relationship between them is
automatically assumed [Barker et al., 1996]. There
are two problems with this assumption: 1) signifi-
cant sequence similarities are not always indicative
of close evolutionary relations, and 2) despite lim-
ited sequence homology, proteins can have struc-
tural and mechanistic similarities, and even com-
mon ancestry not apparent through alignment. Per-
haps structural information should also be consid-
ered when attempting to classify proteins that are
highly divergent in homology, yet functionally equiv-
alent.

Such an approach has been used to identify mo-
tifs in proteins that may be related through conver-
gent evolution. Leucine zipper sequences, involved
in protein dimerization, appear in diverse families
that lack a common ancestor and thus may be an
example of a convergent motif. These regions lack
sequence similarity, being comprised of a repeating
pattern of a single conserved leucine residue sepa-
rated by six highly variable amino acids. This pat-
tern repeats on average about four times in a pro-
tein. Because of the high variability in the sequence
of the motif, pattern discovery is combined with
secondary structure prediction; leucine zippers form
coiled coil structures that are involved in dimer for-
mation [Bornberg-Bauer et al., 1998]. Further con-
founding pattern prediction, leucine is sometimes re-
placed with methionine, valine or isoleucine. This
flexibility in motif sequence which reflects flexibil-
ity in biological function (proteins with leucine zip-
per domains can often form different combinations
of hetero- and homodimers) must be considered in
pattern prediction for proteins.

Identification of patterns that have been con-
served through evolution can lead to the association
of these sequences with protein function or struc-
ture. A first step to function prediction is to look
for sequence features that are common to groups
of proteins with a specified activity but are absent
from proteins without the activity. Savoie et al.
[Savoie et al., 1999] used such an approach to de-
velop a recognition rule for sequences that determine
whether a peptide will activate a T-cell response.
These motifs are essentially antigenic determinants
that elicit an immune response and can be used to
develop vaccines. The premise of all attempts to as-
sign function to unknown proteins by pattern recog-
nition is that highly conserved sequences have been

preserved through evolution because they are im-
portant to the function or structure of the protein.
While intuitively this seems a valid assumption, it is
possible that some conserved sequences may simply
correspond to regions with a lower rate of mutation.

Although functional motifs may not be apparent
in the protein primary sequence when they consist
of single conserved amino acid residues separated by
long, variable regions, these conserved residues may
come together to form a functional group when the
protein is folded into its three dimensional struc-
ture [Califano, 2000]. On the other hand, patterns
of conserved sequences can often highlight elements
that are responsible for structural similarity between
proteins and can be used to predict the three dimen-
sional structure of a protein.

Because some amino acids share similar char-
acteristics such as size, charge or hydrophobic-
ity, substitutions are often permitted in pro-
tein motifs even where residues are important
to structure or function. Nevill-Manning et al.
[Nevill-Manning et al., 1998] describe a method for
discovering conserved motifs that characterize a pro-
tein family but are somewhat flexible in the amino
acids allowed in particular positions within the mo-
tif. Groups of amino acids occurring at each position
in a motif with significant frequency were identified
and used to characterize subsets of motifs that are
biologically relevant. While a motif should be sen-
sitive enough to allow identification of new family
members with a minimum of false negatives, there
may be a tradeoff in terms of specificity; lower speci-
ficity leads to the identification of false positive se-
quences.

Once biological dictionaries of protein sequence
patterns are constructed (see Appendix B for exam-
ples of protein motif databases), they can be used
to predict the function of newly discovered or un-
known proteins, or to screen genomic databases for
other proteins with similar function. Chloroplasts
are the photosynthetic organelles of plant cells that
also perform many other functions such as hormone
synthesis. More than 200 proteins are involved in
chloroplast activity; some of these are encoded on
the chloroplast genome while others are encoded on
the nuclear genome of the plant cell. The latter
proteins are synthesized in the cytosol and are then
transported to the chloroplast. Thus, targeting of
proteins to the chloroplast and localization of pro-
teins within the chloroplast are complex and are
specified by sequences within the protein. Peltier
et al. [Peltier et al., 2000] systematically charac-
terized chloroplast proteins by two dimensional gel

4

electrophoresis, mass spectrometry, and protein se-
quencing. Using a combination of de novo motif
discovery and detection of known motifs, they iden-
tified motifs that specify the function and location
of many of the chloroplast proteins.

Protein function can be determined by detec-
tion of characteristic motifs even in the absence
of homology outside of the motif sequence. RNA
genomes found in many viruses such as HIV and
Ebola, replicate frequently and rapidly and there-
fore accumulate errors at a high rate. Thus, ge-
nomic sequences among these viruses tend to be
highly divergent. Although biological and biochem-
ical data indicate a common ancestry, there is of-
ten no statistically significant homology among se-
quences. To predict the function of a protein from
an RNA virus, one could look for conserved mo-
tifs [Mcclure and Kowalski, 1999]. Viral genomes
are typically small and encode only a few proteins
necessary for viral replication. Conserved motifs are
therefore likely to specify the function or structure
of a protein because if the sequence deviated signifi-
cantly from the consensus sequence, then the protein
would likely not be functional and the virus would
be unable to reproduce.

2.2 Pattern discovery in non-coding
regions

Similar to patterns in proteins, motifs in non-coding
sequences can be used to determine the function of
nucleotide sequences on a global level, for example,
to find all promoters in a genome, or to determine
specific function such as regions involved in tissue-
specific regulation of gene expression. Non-coding
sequences are generally not well conserved, there-
fore, the presence of a conserved sequence in the
region upstream of a gene usually implies that it
is functionally important. Finding all promoters in
large genomic sequences necessitates the identifica-
tion of features that are common to all promoters
but are not present in non-promoter sequences. This
is a difficult problem, especially in eukaryotic organ-
isms which do not have a single core promoter and
are usually associated with multiple regulatory fac-
tors. Some approaches include the identification of
global signals that interact with RNA polymerase
and general transcription factors (e.g., TATA and
CAAT boxes, CpG islands), the detection of up-
stream regions with a high density of transcription
factor binding sites (although these are often not
clustered), and the identification of sequence char-
acteristics that influence DNA three dimensional

structure (regions downstream of the TATA box
tend to be highly bendable while regions upstream
have low bendability) [Pedersen et al., 1999].

Often the goal is not only to locate promot-
ers, but to understand how genes under the con-
trol of these promoters are regulated. This in-
volves identifying specific regulatory sequences in
promoter regions, for example, that bind to spe-
cific transcription factors in response to a biolog-
ical signal. Known transcription factor binding
motifs can be modeled to find additional binding
sites in a genome and thereby identify genes that
are regulated in the same manner. Geraghty et
al. [Geraghty et al., 1999] were able to identify new
genes that were coordinately regulated by the fatty
acid oleate in the genome of Saccharomyces cere-
visiae. These genes have a common upstream reg-
ulatory sequence known as the oleate response ele-
ment (ORE). The S. cerevisiae genome database was
screened for this element, constraining the search to
within 500 bases upstream of ORFs greater than 100
codons. Because genes controlled by an ORE were
expected to be targeted to the peroxisome (mem-
brane bound organelles involved in, among other
things, fatty acid metabolism), the coding sequences
downstream of predicted OREs were screened for
the presence of a peroxisome motif. The proteins
encoded by these genes provided new insights into
interesting metabolic mechanisms of the cell. Sim-
ilarly, Roulet et al. [Roulet et al., 2000] found new
sites that bind to members of the CTF/NFI family
of eukaryotic transcription factors. These motifs are
difficult to detect because they consist of two short
motif sequences separated by a spacer of variable
length; half sites are also recognized. By synthe-
sizing a series of oligonucleotides with variations on
the consensus sequence and determining their bind-
ing efficiency to a CTF/NFI transcription factor by
gel shift assay, they were able to develop a model
that was successfully used to find new binding sites.

Prediction of regulatory protein binding sites can
help to infer the function of a gene when homologous
genes of known function are not available. Yada et
al. [Yada et al., 1997] outline the development of a
recognition rule for all of the different sigma factor
binding sites (a sigma factor is a component of RNA
polymerase involved in promoter recognition) in the
Bacillus subtilis genome. They applied this infor-
mation to the prediction of sigma factors that would
bind to the promoters of uncharacterized genes and
initiate expression. The function of these unknown
genes can then be hypothesized by analogy to the
known function of other genes regulated by the same

5

sigma factor.

When the transcription factor binding motifs
are unknown, they can be found by search-
ing for common elements in the upstream re-
gions of genes that are known to be coreg-
ulated (such genes are known as regulons)
[Mironov et al., 1999, Hughes et al., 2000]. A com-
parative approach can be used to predict regu-
latory sequences in different genomes, however,
the cognate regulatory factor must be known to
be conserved [Gelfand et al., 2000]. Travasoie et
al. [Tavazoie et al., 1999] examined life cycle-
dependant patterns of gene expression in Saccha-
romyces cerevisiae by first collecting and analyzing
mRNA using microarrays, and grouping the corre-
sponding open reading frames according to the spe-
cific point in the yeast’s life cycle in which they were
expressed. Sequence patterns that are common and
specific to each group were then identified in the
upstream regions of these genes; these are likely to
be involved in developmentally-specific regulation of
gene expression. The motifs were used to detect ad-
ditional sites in the genome with the goal of eventu-
ally understanding the regulatory networks within
the cell. The advantage of this approach is that it is
not influenced by any prior knowledge of genes that
might be expressed or the organism that they are
expressed in, and is therefore particularly useful to
understand regulation in organisms for which very
little biology is known. A similar approach could be
used to analyze gene expression in different tissues,
in response to a given stimulus (for example, an en-
vironmental signal), or as a cell transitions from a
normal to an abnormal state.

It may be of interest to find motifs in RNA se-
quences; however, RNA molecules such as tRNA,
rRNA and catalytic RNA are usually more con-
served in structure than in sequence. The prop-
erties of an RNA molecule are often determined
by its structure which can take various forms as
a consequence of intramolecular basepairing within
the single stranded molecule, for example, pseudo-
knots, hairpin loops, bulges, etc. Thus, aligning
RNA solely on the basis of conserved sequences is
often misleading. Rather, to look for motifs, an
RNA sequence is searched for regions that could po-
tentially basepair to form secondary structure; of
course, distance constraints would have to be ap-
plied and a minimun number of base pairs would
be required [Gorodkin et al., 1997b]. One mecha-
nism of transcription termination in bacteria, the
so-called rho independent termination, involves the
formation of a secondary structure known as a stem-

loop (or hairpin) in mRNA just upstream of the
termination site. Intramolecular complementary
base pairing results in formation of a stem which
is capped by a loop of unpaired bases. Ermolaeva et
al. [Ermolaeva et al., 2000] used secondary struc-
ture patterns to predict transcription terminators
in twelve bacterial genomes. They searched ge-
nomic sequences for an mRNA motif characterized
by a stable stem sequence (i.e., high in GC content,
with only one basepair mismatch in a sequence that
would generate a stem of 4-20 nucleotides), followed
closely by a short U-rich region, and within a rea-
sonable distance of an open reading frame.

The recognition of regulatory sequences in eukary-
otic and prokaryotic DNA sequences has had rela-
tively limited success. Regulation of gene expres-
sion is complex. It is common for transcription fac-
tors to bind to their DNA target sites in cooper-
ation with many other factors that act synergisti-
cally to induce gene expression. In many cases tran-
scription factors can form different combinations of
hetero- and homodimers that bind with different
specificities; these can often bind in their monomeric
form. Other problems that hinder the development
of good models for promoter prediction include the
relatively low number of characterized promoters
and poor understanding of the signals for start and
stop of transcription and translation, especially in
eukaryotes. In a review by Ficket and Hatzige-
orgiou [Fickett and Hatzigeorgiou, 1997], currently
available promoter prediction programs were tested
and found at best about half of eukaryotic promot-
ers.

For the detection of protein binding sequences
in DNA, the spatial distribution of amino acids
with respect to a DNA substrate should be exam-
ined in addition to the interaction of the protein
with a specific DNA sequence. Kono and Sarai
[Kono and Sarai, 1999] surmised that the distribu-
tion of amino acids around bases found in 130
protein-DNA complexes in the protein data bank
could be used to derive empirical interaction poten-
tials, and thus to predict DNA target sites for DNA-
binding proteins. A strict sequence correspondence
between amino acids and bases was not found, al-
though preferences were evident. However, the in-
teractions between amino acids with a strong base
preference and their cognate DNA target could be
formed with other amino acids.

Sometimes the initial assumptions used to find
motifs are oversimplified. The objective of Kochetov
et al. [Kochetov et al., 1999] was to predict prop-
erties of mRNA sequences that influence levels of

6

translation. They compared the mRNA sequences
of highly expressed genes with the mRNA sequences
of poorly expressed genes to detect sequence features
essential for efficient expression. The selection of
highly expressed mRNA was based on the assump-
tion that an abundance of polypeptides is a conse-
quence of efficient translation, and conversely, that
inefficient expression results in a scarcity of polypep-
tides. This approach does not take into account
other factors that influence polypeptide levels such
as RNA stability, promoter activity, etc. It is pos-
sible to have a very efficient translation process and
still have a short supply of polypeptides. For the
cell, more does not necessarily mean better and it
is doubtful that efficient translation processes in the
cell have been selected through evolution because
they result in greater production of polypetides.

2.3 Tandem Repeats

A particularly interesting problem in pattern-
finding involves the detection of tandem repeats,
which are two or more contiguous, approximate
copies of a pattern of nucleotides. Tandem duplica-
tion occurs as a result of mutational events in which
an original segment of DNA, the pattern, is con-
verted into a sequence of individual copies. With the
progression of time, the individual copies within a
tandem repeat may undergo other “uncoordinated”
mutations which render the once-identical copies in
the original pattern now only approximate variations
of each other.

The prevalence of tandem repeats is surprisingly
high in genomic sequences. [Benson, 1999] notes
that “Tandem repeats are presumed to occur fre-
quently in genomic sequences, comprising perhaps
10% or more of the human genome, But, accurate
characterization of the properties of tandem repeats
has been limited by the inability to easily detect
them”. As Benson also goes on to say, the detection
of tandem repeats has come to assume an increas-
ing importance in genomic research, for both posi-
tive and negative reasons. On the negative side, the
appearance of specific kinds of tandem repeats has
been linked to a number of different diseases, in-
cluding Huntington’s disease, myotonic dystrophy,
spinal and bulbar muscular atrophy, and Friedrich’s
atxia. In each of these cases, individuals with the
disease have a huge increase in the number of copies
of a trinucleotide pattern, into the hundreds or even
thousands. On the positive side, however, it appears
that tandem repeats may play a role in gene regula-
tion (interacting with transcription factors, altering

the structure of the chromatin, or acting as protein
binding sites [Benson, 1999, p.573] and in the devel-
opment of immune system cells.

3 Algorithms

3.1 Introduction

Algorithmic approaches to pattern discovery exhibit
surprising variety. They can be classified according
to different more or less orthogonal criteria. In our
report we group algorithms together mainly based
on the approaches they use. In this introduction
we introduce other possible classifications of the al-
gorithms. We concentrate on two issues: how is
the biological task formulated in computer science
terms, and what kind of patterns are used in the pro-
grams. We also introduce notation used throughout
this section.

3.1.1 Computer science questions

Problem of pattern discovery appears in different ar-
eas of biology. Good examples are protein binding
sites (including but not limited to discovery of el-
ements regulating gene expression) and motifs con-
served in members of protein families. More detailed
discussion of biological aspects of motif finding see
Section 2. Now we will discuss how to translate
such biological questions to more formal computer
science problems.

Classification problems. One class of problems
are classification problems. These occur for exam-
ple in protein families. One of the goals of finding
common motifs in protein families is to use these
motifs as a classifiers: given an unknown protein
we can classify it as a member or non-member of
a family, based on the fact whether it contains the
motifs characteristic for the family. In this case we
may formulate question as a machine learning prob-
lem: given a set of sequences belonging to the family
(positive examples) and a set of sequences not be-
longing to the family (negative examples) one may
wish to find a function f which for each protein de-
cides whether it belongs to the family or not. In
context of motif discovery we are mostly interested
in such classes of functions f that involve match-
ing some discovered patterns against the unknown
sequence. Note, that negative examples are simply
other known proteins taken from protein databases
such as SWISS-PROT. Quite often people start only
from positive examples and negative examples use

7

for evaluation of their classifiers. In this case they
usually solve the problem of finding suitable signif-
icant patterns as described below. A detailed dis-
cussion of possible formalizations of pattern finding
as classification problem can be found in a review
[Brazma et al., 1998].

Finding significant patterns. Motif discovery
is not always formulated as a classification prob-
lem. For example if we want to find a regulatory
element, we might have a set of regions likely to
contain this element. However it does not mean,
that this element cannot occur in other places in
genome or that all of these sequences must contain
common regulatory element. Also in a context of
protein family motifs we are interested in finding
conserved regions that may indicate structurally or
functionally important elements, regardless whether
they have enough specificity to distinguish between
this family and other families. In this context it
is more complicated to formulate the question pre-
cisely. Usually people define class of patterns they
want to find and they are interested in discovering
the highest scoring pattern from this class that has
enough support. Various approaches differ in a way
how the define a support and a score of a pattern.

Support of a pattern usually means the number
of sequences in which the pattern occurs. We can
require that pattern should occur in all sequences
or there is a minimum number of occurrences spec-
ified by user. In some cases the number of occur-
rences is not specified but it is part of a scoring
function – longer pattern with fewer occurrences
can be sometimes more interesting than shorter pat-
tern with more occurrences. The situation is even
more complicated in the case of probabilistic pat-
terns, such as Hidden Markov models. Determinis-
tic patterns either match sequence or not (zero or
one), whereas probabilistic models give a probabil-
ity between 0 and 1. Therefore there are different
degrees of “matching”. It is necessary to set some
threshold on what should be considered a match or
to include these matching probabilities to the score
of the pattern.

Methods for scoring patterns also differ from pa-
per to paper. Score can describe only the pattern
itself (e.g. its length, degree of ambiguity etc.) or it
can be based on the occurrences of the pattern (their
number, how much these occurrences differ from the
pattern). Scoring functions are sometimes based on
statistical significance. For example we may ask,
what is the probability that the pattern would have
so many occurrences if the sequences were generated

by random. If this probability is small, the pattern
is statistically significant. More detailed discussion
of statistical significance of patterns can be found in
Section 4.

The goal of an algorithm may be to find the best
(i.e. usually the highest scoring patterns), or to find
several best scoring patterns, or all patterns with
some predefined level of support and score.

Pattern discovery vs. pattern matching. So
far we have discussed the problem of pattern dis-
covery, i.e. the algorithm is supposed to discover
pattern unknown in advance. However in biology
many consensus sequences are known and it is im-
portant to have tools that allow to find occurrences
of known patterns in new sequences. This problem
will be called pattern matching. Program for pat-
tern matching can be quite general, i.e. they get
pattern as a part of input, or they can be built to
recognize only one particular kind of pattern. In
this case authors usually try to fine-tune the pa-
rameters of the system to get better sensitivity and
specificity of the algorithm. From computer science
point of view these programs are not so interesting,
however they are very useful for biologists.

3.1.2 Input sequences

The input of pattern discovery programs usually
consists of several sequences, expected to contain
the pattern. We will denote Σ the alphabet of all
possible characters occurring in the sequences. Thus
Σ = {A,C,G, T} for DNA sequences and Σ is a set
of all 20 amino acids for protein sequences. Most of
the algorithms can be easily adapted to work with
any finite alphabet (this is true for algorithms, but
not necessarily for their implementations). Thus the
pattern finding algorithm can be used also outside
bioinformatics, or on other types of biological data.

Some algorithms use not only sequences, but also
other information. For example pattern discovery is
much easier in aligned sequences. Also we may use
information about secondary or tertiary structure,
evolutionary relationships between sequences and so
on. However most of the time we will concentrate
on the discovery from unaligned sequences only.

3.1.3 Types of patterns

Different programs discover patterns of different
kind. On the most general level patterns can be
divided between deterministic and probabilistic. A
deterministic pattern either matches given string or
not. On the other hand probabilistic patterns are

8

usually probabilistic models that give to each se-
quence probability that this sequence is generated
by the model. The higher is this probability, the
better is the match between sequence and pattern.

Deterministic patterns. The simplest kind of a
pattern is just a sequence of characters from alpha-
bet Σ, such TATAAAA, the TATA box consensus se-
quence. We can also allow more complex patterns,
adding some of the following frequently used fea-
tures.

• Ambiguous character is a character corre-
sponding to a subset of Σ. Ambiguous char-
acter then matches any character from this
set. Such sets are usually denoted by a list
of its members enclosed in square brackets e.g.
[LF] is a set containing L and F. A-[LF]-G

is a pattern in a notation used in PROSITE
database. This patterns matches 3-character
subsequences starting with A, ending with G
and having either L or F in the middle.

For nucleotide sequence there is a special let-
ter for each set of nucleotides, where R=[AG],
Y=[CT], W=[AT], S=[GC], B=[CGT], D=[AGT],
H=[ACT], V=[ACG], N=[ACGT].

• Wild-card or don’t care is a special kind of
ambiguous character that matches any charac-
ter from Σ. Wild-cards are denoted N in nu-
cleotide sequences, X in protein sequences. Of-
ten they are also denoted by dot ’.’. Sequence
of one or several consecutive wild-cards is called
gap and patterns allowing wild-cards are often
called gapped patterns.

• Flexible gap is a gap of variable length. In
PROSITE database it is denoted by x(i,j)

where i is the lower bound on the gap length
and j is an upper bound. Thus x(4,6) matches
any gap with length 4, 5, or 6. They also
denote a fixed gap of length i as x(i) (e.g.
x(3) = ...). Finally * denotes gap of any
length (possibly 0).

Following string is an example of a PROSITE
pattern containing all mentioned features:
F-x(5)-G-x(2,4)-G-*-H. Some programs do
not allow all these features, for example they do
not allow flexible gaps or they allow any gaps but
do not allow ambiguous characters other than a
wild-card.

Patterns with mismatches. One can further ex-
tend expressive power of deterministic patterns by
allowing certain number of mismatches. Most com-
monly used type of mismatches are substitutions.
In this case subsequence S matches pattern P with
at most k mismatches, if there is a sequence S ′ ex-
actly matching S that differs from S in at most k
positions.

Sometimes we may also allow insertions or dele-
tions, i.e. the number of mismatches would be an
edit distance between the substring S and a closest
string matching the pattern P .

Position weight matrices. Even the most com-
plicated deterministic patterns cannot capture some
subtle information hidden in a pattern. Assume we
have a pattern that contains on the first position
C in 40% cases and G in 60% cases. The ambigu-
ous symbol [CG] gives the same importance to both
nucleotides. It is so important in strong patterns,
but it may be important in weak patterns, where
we need to use every piece of information to distin-
guish the pattern from random sequence.

The simplest type of probabilistic pattern is
position-weight matrix (PWM). PWMs are also
sometimes called position-specific score matrix
(PSSM), or a profile (however profiles are often more
complicated patterns, allowing gaps). PWM is a
simple ungapped pattern specified by a table. This
table contains for each pair (position, character), the
relative frequency of the character at that position
of the pattern (see Figure 1 for an example).

Assume that the pattern (i.e. PWM) has lent k
(number of columns of the table). The score of a
sequence segment x1 . . . xk of length k is

k
∏

i=1

A[xi, i]

f(xi)

where A[c, i] is an entry of position weight ma-
trix corresponding to position i of the pat-
tern and character c and f(c) is background
frequency of character c in all considered se-
quences. This product represents odd-score that
the sequence segment x1 . . . xk belongs to the
probability distribution represented by the PWM
[Dorohonceanu and Nevill-Manning, 2000]. In or-
der to simplify computation of the score we can store
log-odd scores logA[c, i]/f(c) in the table, instead of
plain frequencies A[c, i]. Then the following formula
gives us log-odd score instead of odd score (A′[c, i]

9

PWM with relative frequencies
A 0.26 0.22 0.00 0.00 0.43 1.00 0.11
C 0.17 0.18 0.59 0.00 0.26 0.00 0.35
G 0.09 0.15 0.00 0.00 0.30 0.00 0.00
T 0.48 0.45 0.41 1.00 0.00 0.00 0.54
PWM with log-odd scores (using f(c) = 1

4
)

A -3.94 -4.18 −∞ −∞ -3.22 -2.00 -5.18
C -4.56 -4.47 -2.76 −∞ -3.94 −∞ -3.51
G -5.47 -4.74 −∞ −∞ -3.74 −∞ −∞
T -3.06 -3.15 -3.29 -2.00 −∞ −∞ -2.89

Figure 1: Position weight matrix of vertebrate branch point in form of a table and corresponding
visual representation as a sequence logo. The sequence logo was created using on-line software at
http://www.cbs.dtu.dk/gorodkin/appl/slogo.html

is an entry of the table containing log-odd scores):

k
∑

i=1

A′[xi, i].

Position-weight matrices can be vi-
sualized in the form of sequence logos
[Schneider and Stephens, 1990] (see Figure 1).
Each column of a sequence logo corresponds to one
position of the pattern. Relative heights of the
characters in one column are proportional to the
frequencies A[c, i] at the corresponding position of
the pattern. The characters are displayed sorted
according to their frequency, with the most frequent
character on top. Each column is scaled so that
its total height is proportional to the information
content of the position, computed as

log2 |Σ|+
∑

c

A[c, i] log2A[c, i].

Value log2 |Σ| is added in order to obtain pos-
itive values. It depends on the size of alpha-
bet Σ. Sequence logos were further improved by
[Gorodkin et al., 1997a] to take background distri-
bution into account, and displaying characters that
occur less frequently than expected upside down.

Quick look at a sequence logo reveals most pre-
served positions, consensus characters at all posi-
tions etc. Notice, that the size characters in different
columns cannot be directly compared.

Stochastic models. All types of patterns dis-
cussed so far are explicit in a sense that the user
can easily see important characteristics of the oc-
currences of a pattern. Sometimes it is advanta-
geous to represent a pattern in a more implicit form,

usually as some discrimination rule, which decides
whether a given sequence is an occurrence of the
modeled pattern or not. Such a discrimination rule
can be based on some stochastic model, such as hid-
den Markov model (HMM), or can employ machine
learning methods, for example neural nets, and so
on.

It is possible to argue whether such rules consti-
tute a pattern at all, but obviously they can be
trained (which corresponds to pattern discovery)
and then they can be used for discrimination (which
corresponds to pattern matching). Therefore they
are applicable in pattern-related tasks such as pro-
tein family classification, binding sites discovery etc.
In some cases (such as HMMs with simple topology)
it is even possible to obtain some information about
the pattern modeled, such as relative frequencies of
characters at individual conserved positions.

3.2 Exhaustive search

Many computer science problems related to pattern
discovery are provably hard, therefore one cannot
hope to find fast algorithm which would guarantee to
find the best possible solution. Therefore many ap-
proaches are based on exhaustive search. Although
thus algorithms may run in exponential time in the
worst case, programs often use sophisticated prun-
ing techniques that make the search feasible for typ-
ical input data.

3.2.1 Enumerating all patterns.

The simplest approach to pattern discovery is
to enumerate all possible patterns satisfying con-
straints given by the user, for each pattern find its
occurrences in input sequences and based on this

10

occurrences assign score or statistical significance to
each pattern. Then we may output patterns with
highest score or all patterns with scores above some
threshold.

For example if we want to find the most significant
nucleotide pattern of length 10, allowing at most 2
mismatches, we can enumerate all possible strings of
length 10 over the alphabet {A,C,G, T} (there are
410 = 1, 048, 576 such strings). Each string is a po-
tential pattern. We find all its occurrences with at
most 2 mismatches in input sequences and to com-
pute the score of the pattern. Then we report the
pattern with the highest score.

This method is however suitable only for short
and simple patterns, because the running time grows
exponentially with the length of the pattern. The
number of possibilities is even larger if we allow pat-
terns containing wild-cards, ambiguous characters,
gaps etc. On the other hand the running time grows
usually linearly with increasing length of the in-
put sequences. Therefore the enumeration approach
may be suitable for finding short patterns in a huge
amount of data.

The advantage of this method is that it is guaran-
teed to find the best pattern. We may easily output
arbitrary number of high scoring patterns, we may
also choose relatively complicated scoring functions,
as far as they can be easily computed based on the
pattern and its occurrences. Also we can allow mis-
matches, even insertions and deletions.

Application of enumerative method. Many
protein binding sites in DNA are actually short un-
gapped motifs, with certain variability. They can
be quite well modeled with simple patterns allow-
ing small number of mismatches. Therefore we can
apply exhaustive search to find this type of bind-
ing sites. Recent examples of this approach can be
found in [van Helden et al., 1998, Tompa, 1999]. In
both papers authors use straightforward enumera-
tion of all possible patterns and concentrate more
on estimating statistical significance of their occur-
rence. [van Helden et al., 1998] tries to find pattern
that appears in several copies in most sequences
(GATA box). Therefore they consider patterns con-
sisting of 4-9 nucleotides not allowing mismatches
and they try to find such patterns that occur more
often than others, taking into account background
distribution. [Tompa, 1999] allows mismatches and
tries to find statistical significance of the given num-
ber of occurrences of the pattern with mismatches.

Enumerating gapped patterns. In some con-
texts it is more reasonable to search for patterns
with gaps. Example of such system is MOTIF
[Smith et al., 1990]. MOTIF finds patterns with
3 conserved amino acids, separated by two fixed
gaps (for example A...Q....I). The gaps can have
length 0, 1, . . . , d where d is a parameter specified
by user. The number of possible patterns is 203d2.
MOTIF does not allow any mismatches, however the
pattern does not need to occur in all sequences. If
the sequences contain a conserved region of more
than 3 positions, then there will be many patterns,
each containing different subset of conserved posi-
tions from this region. Therefore in the next step
the algorithm removes patterns occurring close to
each other. Then all matches of a particular pattern
are aligned and based on this alignment the pattern
is extended by finding consensus in the columns of
the alignment. Pattern can be also extended to both
sides, if possible.

Pruning pattern enumeration. If we want to
find longer or more ambiguous patterns, we cannot
use straightforward exhaustive search. Assume we
want to find a long ungapped pattern occurring pos-
sibly with some mismatches in at least K sequences.
The we may start from short patterns (for example
patterns of length 1) that appear in at most K se-
quences and extend them until the support does not
go below K. In each step we need to extend the pat-
tern in all possible ways and check whether the new
pattern still occur in at least K sequences. Once
we get a pattern that cannot be extended without
loss of support, this pattern is maximal and can be
written to output. This search strategy is actually a
depth first search of the tree of all possible sequences
(see Figure 2). We prune branches that cannot yield
any supported patterns.

This kind of improvements can work well in
some real-life situations, however the theoretical
worst-case time still remains exponential. Their
main advantage is that they allow to search for
longer and more complicated patterns than sim-
ple exhaustive search. Examples of this strategy
include Pratt algorithm described in detail below
and the first, scanning phase of TEIRESIAS algo-
rithm [Rigoutsos and Floratos, 1998b] (see also part
3.3.1). Both programs find patterns allowing gaps.

Pratt software. Pratt [Jonassen, 1996] is quite
advanced algorithm based on the idea of depth first
search in a tree of patterns, as described above.
Pratt discovers quite general patterns which contain

11

aa
supp. 3

supp. 1
abb

aaba
abaa
aabb

Sequences:

Required support K=2
Without mismatches

aaba aabb abaa abab
supp. 1 supp. 1 supp. 1 supp. 0

empty
pattern

supp. 2
bb

supp. 1

baa bab

b

supp. 1 supp. 0

ba

pattern

support
(# of occurrences)

supp. 3
a

supp. 0

supp. 3

aaa aab
supp. 2 supp. 2

ab
supp. 3

aba

Figure 2: One way to improve exhaustive search is to search in a tree of all possible patterns. When we
discover node corresponding to pattern that does not have enough support, we do not continue to search
its children. Dashed nodes do not have enough support. Bold nodes are patterns that cannot be further
extended.

flexible gaps (such gap has lower and upper bound
of its length) and ambiguous symbols (i.e. symbols
representing sets of symbols from Σ). Each discov-
ered pattern is required to match exactly at least
some predetermined number of sequences. The user
has to specify number of parameters that restrict the
type of patterns. These include the maximum total
length of pattern, maximum number of gaps, max-
imum number of flexible gaps, allowed ambiguous
symbols (i.e. allowed sets of related amino acids)
and so on.

To reduce the size of output and the size of search
space the program does not report patterns that are
less specific than other discovered patterns. Here
pattern A is more specific than pattern B if any
sequence that matches A must also match B (for
example B is less specific if it can be obtained from
A by deleting some consensus characters, replacing
non-ambiguous character with ambiguous, or mak-
ing a gap more flexible). This is achieved by a spe-
cial scoring function that gives higher score to more
specific patterns than to less specific.

In each step of the depth first search we take an
existing pattern with sufficient support and we add
a gap (possibly of length 0) and another character or
ambiguous character. All such possibilities are tried
out. This means that if we allow flexible gaps, we
try all possible lengths of these gaps, if we allow am-
biguous symbols, we try all possible sets of symbols.
Afterwards each new pattern is tested whether it
has enough support. This is done by a special data
structure which makes the search faster. Patterns

without enough support are discarded.

There are also other optimizations. First, even
in one expansion step some new patterns are less
specific than others. If more specific pattern and
less specific pattern have the same occurrences in
sequences, the less specific pattern is not needed (it
will not produce better patterns later). Therefore we
can discard it.1 Also for each pattern created so far
it is possible to estimate the maximum score we can
obtain by extending this pattern. If this estimated
maximum is lower than the best score found so far
we can discard the current pattern.

In case when no flexible gaps are allowed, the
Pratt algorithm is guaranteed to find the pattern
with highest score that has enough support. In case
when we allow flexible gaps, one of the optimiza-
tions is only a heuristics, and therefore does not
guarantee finding the highest scoring pattern. The
program can also return the highest scoring pattern
among those that start at a particular position in
the sequence. In this way we get more than one
high scoring pattern.

3.2.2 Exhaustive search on graphs

So far we have concentrated on enumerating all pat-
terns or relevant part of the pattern space. Dif-
ferent idea is to search through all combinations of
substrings of given sequences that can be possible

1Similar idea is used to much greater extend in TEIRE-
SIAS algorithm.

12

occurrences of a pattern. Assume we have n se-
quences and we want to find pattern of given length
L which occurs in all sequences with at most d mis-
matches. Then if we take two occurrences of such
pattern, they will differ in at most 2d positions, be-
cause they both differ from pattern in at most d
positions. The idea is to search for a group of n
substrings of length L, each from different sequence
such that any two differ in at most 2d positions
[Pevzner and Sze, 2000].

Even if we find such combination of substrings
it does not guarantee that we find a pattern. For
example assume that we want pattern of length L =
4 with at most one mismatch and we have found the
following 3 occurrences: AAAA, BBAA and CCAA. Any
two of them differ in exactly 2 = 2d positions but
there is no string such that they would all differ
in at most one position from this string. However
we may assume that this would not happen very
often and that most found combination will actually
correspond to a pattern.

Another problem is to find the actual pattern from
the set of occurrences. Sometimes we do not need
the pattern, only the occurrences (for example when
we search for protein binding sites). In other cases
we may enumerate all patterns that occur within
distance d from one chosen occurrence (there are at
most

(

L
d

)

(|Σ|−1)d such patterns, this number is ex-
ponential in d but not in L, and d is typically small).
The search can be further pruned by using knowl-
edge about other sequences. Different possibility is
to use the set of occurrences as a starting point of
Gibbs sampling or other iterative method (see part
3.4.1, 3.4.2). This is not guaranteed to really find
the pattern with specified parameters.

Now let us return to the problem how to find the
set of n occurrences, one from each string, so that
each two differ in at most 2d positions. This can
be formulated as a problem in graph theory. Each
substring of length L will be a vertex of graph G.
Vertices corresponding to two substrings will be con-
nected by an edge if the substrings are taken from
different sequences and differ in at most 2d posi-
tions (see Figure 3a). This graph is n-partite, which
means that it can be partitioned to n partitions so
that edges there is no edge between vertices in one
partition. In this case partitions will corresponds to
individual sequences. We want to find a set of n
vertices such that any two vertices are connected by
an edge. Such set of vertices is called clique.

Problem of finding clique is known to be NP-
complete, i.e. we do not know any polynomial-time
algorithm. One possibility is to search for clique

using exhaustive search with careful pruning. Algo-
rithm WINNOWER [Pevzner and Sze, 2000] vastly
reduces the number of edges in the graph, removing
only edges that cannot be part of any clique of size
n. In this way we may obtain graph with less edges,
that will be easy to search for clique.

The algorithm is based on the notion of expand-
able clique. It is clear that each vertex of a clique
is in a different partition (because in clique all pairs
of vertices are connected by an edge and vertices in
one partition are not connect by an edge). We want
to find a clique that has in each partition exactly
one vertex. Vertex is called a neighbor of a clique if
it connected by an edge with each vertex of a clique
(i.e. by adding this vertex we get a bigger clique).
Clique with k < n vertices is called expandable if it
has in each partition at one vertex or at least one
neighbor.

If the graph contains a clique with n vertices, then
when we take a subset containing k of these n ver-
tices, this subset is an expandable clique. Therefore
for any clique with n vertices there are

(

n
k

)

expand-
able cliques with k vertices. Any edge belonging to a
clique with n vertices is therefore member of

(

n−2
k−2

)

expandable cliques. Therefore if we find an edge
that is not a member of

(

n−2
k−2

)

expandable cliques,
than this edge cannot be part of n-vertex clique and
it can be deleted. We can delete edges until there
are no more edges that can be deleted.

In particular we choose k and find all expand-
able cliques and remove edges that are not in at
least

(

n−2
k−2

)

of them. This can destroy some ex-
pandable cliques and therefore we iterate (see Figure
3b). Probably entire process can be made more ef-
ficient than iteration, however this is not mentioned
in [Pevzner and Sze, 2000]. For k = 1, each ver-
tex is a clique. Vertex is an expandable clique if it
is connected with at least one vertex in each other
partition. Vertices without this properties can be
deleted. For k = 2 clique is each edge (u, v). It is
expandable, if there is a vertex w in each of the n−2
other partitions such that there are edges (u,w) and
(v, w) (i.e. vertices u, v, w form a cycle of length 3).
Each edge should be in

(

n−2
k−2

)

= 1 expandable clique.
Similarly we can require each edge to be in at least
n− 2 expandable cliques with 3 vertices and so on.
The higher k we choose the more time it will take,
but in on the other hand we can remove more and
more edges.

[Pevzner and Sze, 2000] also give expected time
for randomized graph, methods how to find the best
value of d, how to extend the technique for a case
with uneven nucleotide distribution etc.

13

n = 4, d = 1, L = 3
Sequences:
abde

afcg

hbci

jbck

afc

fcgSe
q.

 2
:

af
cg

hbc

bci Se
q.

 3
:

hb
ci afc

fcgSe
q.

 2
:

af
cg

Se
q.

 3
:

hb
cihbc

bci

abd bde

jbc bck

Seq. 1: abde

Seq. 4: jbck

(a) (b)

abd bde

jbc bck

Seq. 1: abde

Seq. 4: jbck

Figure 3: Part (a) shows the graph corresponding to the depicted set of sequences. Part (b) shows the
same graph after removing edges with WINNOWER algorithm with k = 1. This graph contains exactly one
clique corresponding to pattern abc.

3.3 Creating long patterns from
short patterns

In order for a pattern to be significant, it must be
sufficiently long. However long patterns are harder
to find using enumerative techniques presented in
the previous part. One possible approach to finding
long patterns is to start with shorter patterns and
to combine them together. Maybe the most elegant
example of such algorithm is TEIRESIAS algorithm
[Rigoutsos and Floratos, 1998b]. This algorithm is
also based on some kind of well-organized exhaustive
search, this time based on possible combinations of
shorter patterns. In the worst case the algorithm
is exponential, but works very well for usual inputs.
Authors of TEIRESIAS discovered recently different
algorithm which is guaranteed to run in polynomial
time (see part 3.3.2).

3.3.1 TEIRESIAS algorithm

TEIRESIAS searches for patterns consisting of char-
acters of the alphabet Σ and wild-card characters ’.’.
Moreover the patterns must satisfy certain density
constraint, limiting the number of wild-cards occur-
ring in any stretch of pattern. We will call such
patterns 〈L,W 〉 patterns, where L and W are con-
stants specified by user.

Definition 1 Pattern P is an 〈L,W 〉 pattern if it
meets the following rules:

• P is a string of characters from Σ and wild-
cards ’.’

• P starts and ends with a character from Σ

• Any subpattern of P (i.e. subsequence starting
and ending with a character from Σ) containing
exactly L non-wildcard characters has length at
most W .

Consider for example L = 3 and W = 5. String
AF..CH..E is a valid 〈3, 5〉 pattern, however string
AF.C.H..E is not.

TEIRESIAS discovers all 〈L,W 〉 patterns that oc-
cur in at least K input sequences (K ≥ 2 is also
specified by the user). However out of several pat-
terns having essentially the same set of occurrences
it outputs only the one which is most specific. Pat-
tern P is more specific than pattern Q if we can get
Q from P by removing several (possibly 0) charac-
ters from both ends of P and replacing several (pos-
sibly 0) non-wildcards with wildcard. For example
AB.CD.E is more specific than AB..D.

Maximal patterns. Now assume that pattern P
is more specific than Q. It is clear that every oc-
currence of P is also occurrence of Q. If Q has
the same number of occurrences as P than it is not
useful to report both P and Q because they cover
the same occurrences but P contains more informa-
tion. Therefore the algorithm outputs only P . How-
ever if Q has more occurrences than P , we output
also Q, because although it has smaller specificity,
it has greater support. The patterns output by the
TEIRESIAS are called maximal.

Algorithm. The basic idea of TEIRESIAS algo-
rithm is that if a pattern P is a 〈L,W 〉 pattern oc-
curring in at least K sequences, then its subpat-
terns are also 〈L,W 〉 patterns occurring in at least
K sequences. Therefore the algorithm assembles the
maximal patterns from smaller subpatterns.

TEIRESIAS works in two phases. In the first
phase (called scanning phase) it finds all 〈L,W 〉 pat-
terns occurring in at least K sequences that contain
exactly L non-wildcards. This is done by pruned
exhaustive search (see 3.2.1). In the second, con-
volution phase we try to extend these elementary

14

patterns by gluing them together. The basic oper-
ation is to take two patterns P and Q created so
far, take the suffix of P containing exactly L − 1
non-wildcards, take prefix of Q containing exactly
L− 1 non-wildcards. If the suffix and the prefix are
equal, P and Q can be glued together so that the
L−1 non-wildcards overlap. The list of occurrences
of the resulting pattern can be constructed from the
lists of occurrences of P and Q (we do not need to
scan all sequences). If the resulting pattern occurs
at least K times, we keep it, otherwise we discard
it.

For example let P = AB.CD.E and Q = DFE.G

(with L = 3, W = 5). Then P and Q
cannot be glued together, because D.E 6= DF.
However if Q = D.E.G we can glue them to-
gether obtaining AB.CD.E.G. If occurrences of P are
(1, 1), (2, 3), (2, 6), (4, 7) (each pair gives sequence
and position in sequence) and occurrences of Q are
(1, 5), (2, 8), (2, 10), then the list of occurrences for
the new pattern is (1, 1), (2, 6).

Convolution phase. In the convolution phase we
produce all possible patterns in this way. We take
each elementary pattern, and we try to extend it
on both sides by gluing it with other elementary
patterns in all possible ways (depth first search).
Any pattern that cannot be extended without loss
of support can be potentially maximal. However still
we can obtain non-maximal patterns in the output
and some patterns can be generated more than once.
Therefore we keep a list of patterns written to out-
put so far. We check any newly generated pattern
(even if it can be further extended) with the list and
if the list contains more specific pattern with the
same occurrences we simply discard the new pat-
tern. The search for new patterns is organized so
that any maximal pattern P is written to output
before any non-maximal patterns less specific than
P . In this way we never need to remove pattern
already written to the output.

This order of generating patterns is achieved by
careful organization of the depth first search. For
this purpose we define prefix and suffix ordering of
the set of patterns.

Prefix ordering is defined as follows. Take both
patterns and replace all wildcard characters with 0
and other characters with 1. Compare the result-
ing strings lexicographically. The suffix ordering is
defined in similar way, except we compare reversed
strings. For example AB.C is smaller than AC.B.D in
prefix ordering but it is greater in suffix ordering2.

2Please note, that for simplicity we have defined pre-

The convolution phase of the TEIRESIAS algo-
rithm can be described as follows:

Convolution phase:

• For each elementary pattern P (starting with
the largest pattern in prefix ordering), try to
extend pattern P with other elementary pat-
terns.

Extend pattern P :

• While there exist an elementary pattern Q,
which can be glued to the left side of P :

– Take such Q which is largest in suffix or-
dering.

– Let R be the pattern resulting from gluing
Q to the left side of P .

– If pattern R has number of occurrences at
leastK and is maximal with respect to the
set of already reported patterns:

∗ Try to extend pattern R with other
elementary patterns (using the proce-
dure “Extend pattern” recursively).

∗ If pattern R has the same number of
occurrences as pattern P , then pat-
tern P is not maximal and we do not
need to search for other extensions of
P (exit the procedure).

otherwise pattern R is not significant pat-
tern.

• Repeat the same process for the elementary
patterns which can be glued to the right side
of P (starting with the largest pattern in prefix
ordering).

• Report pattern P .

Performance guarantees. It can be shown,
that the TEIRESIAS algorithm produces all
maximal 〈L,W 〉 patterns. For details see
[Rigoutsos and Floratos, 1998b].

Conclusions. The TEIRESIAS algorithm is an
exact algorithm. It is guaranteed to find all 〈L,W 〉
maximal patterns supported by at least K se-
quences.

However, number of such patterns can be very
high. In particular, in [Parida et al., 2000] it is

fix and suffix ordering in reverse order compared to
[Rigoutsos and Floratos, 1998b].

15

shown, that the number of maximal patterns can
be exponential. In such case TEIRESIAS will take
exponential time. However, such situation is not
likely to happen in the real data. For example, in
entire GenPept database containing 120 mil. amino
acids there exist only 27 mil. maximal patterns (see
[Rigoutsos et al., 2000]). Experimental studies sug-
gest that running time of TEIRESIAS algorithm
is linear in the number of patterns on the output
[Rigoutsos and Floratos, 1998a].

The other problem with TEIRESIAS algorithm
is that the form of the patterns is not very flexi-
ble. First of all, the only allowed mismatches are
wildcard characters. Newer versions of TEIRE-
SIAS ([Rigoutsos et al., 2000]) allow also patterns
containing ambiguous characters representing pre-
specified groups of characters from Σ. Second,
TEIRESIAS patterns do not allow gaps with flex-
ible length. This problem can be addressed by post-
processing phase, where we can combine patterns
found into larger patterns separated by flexible gaps
([Rigoutsos and Floratos, 1998a]). However, such
methods do not guarantee the performance of the
algorithm, i.e. not necessarily all patterns of the
specified form will be found.

3.3.2 Work related to TEIRESIAS algo-
rithm

Irredundant patterns. One of the drawbacks
of TEIRESIAS algorithm is potentially exponential
size of the output and thus potentially exponential
running time. This issue was recently addressed in
[Parida et al., 2000] by a new algorithm. This algo-
rithm imposes more restrictions on the set of pat-
terns written to the output. They define a set of ir-
redundant patterns such that all other patterns can
be easily obtained from this set. The size of this
set is at most 3n where n is the length of the input.
Also they give an algorithm finding all irredundant
patterns in O(n3 log n) time. Following definition
gives notion of irredundant patterns.

Definition 2 A maximal pattern P is redundant,
if there exists a set of maximal patterns P1, . . . , Pl,
such that every occurrence of P is also occurrence
of at least one of the patterns P1, . . . , Pl and every
occurrence of Pi (for 1 ≤ i ≤ l) is also occurrence
of P .

For example, consider patterns P1 = AB.D, P2 =
A.DDE, and P = A..D. Let us have the follow-
ing set of sequences: {FABDDE, ABCDCCD, DDACDDE}.
List of occurrences of pattern P1 in this case will be

L1 = {(1, 2), (2, 1)}3 and list of occurrences of pat-
tern P2 will be L2 = {(1, 2), (3, 3)}. We can get list
of occurrences of pattern P as L1∪L2, therefore P is
redundant in this case. However, if we add sequence
EAEDDD, pattern P will no longer be redundant.

The list of occurrences of redundant pattern can
be constructed from the list of occurrences of irre-
dundant patterns without examining the original set
of sequences. Therefore, we do not need to find and
report these patterns explicitly. This feature allows
us to guarantee polynomial running time of the al-
gorithm finding all such patterns.

As far as we know, neither implementation of this
algorithm, nor experimental study demonstrating
application of this approach is available to date.

SPLASH algorithm. Different algorithm, which
finds patterns of TEIRESIAS type is called SPLASH
([Califano, 2000]). As far as we know, the perfor-
mance guarantees of both algorithms are the same
and no comparative study involving both SPLASH
and TEIRESIAS is available to date.

3.4 Iterative heuristic methods

So far we have described mainly algorithms guar-
anteed to find the best pattern. However for more
complicated types of patterns we cannot hope to do
so. We have to use heuristic approaches that do not
necessarily find the best pattern, but may converge
to a local maximum. The most important example
of such technique is Gibbs sampling.

At the end of this part we also describe polyno-
mial approximation scheme for finding certain kind
of patterns. This is a kind of tool that might not
find the best possible pattern, but it is guaranteed
to find a pattern almost as good as possible. We
include it here because it is also based on iterative
ideas. Disadvantage of this approach is that the time
complexity is too high to be of a practical value.

3.4.1 Gibbs sampling

[Lawrence et al., 1993] present a heuristic algorithm
for pattern discovery based on so called Gibbs sam-
pling method. In the simplest version, we are look-
ing for the best conserved ungapped pattern of fixed
length W in the form of position weight matrix. We
assume, that the pattern occurs in all sequences.

The algorithm works in iterations. The result of
each iteration is a set of subsequences of length W

3The first number in each tuple represent a sequence num-
ber, the second number is a position in the sequence

16

– exactly one from each sequence. This set of sub-
sequences represents occurrences of the pattern in
sequences. We can compute a position weight ma-
trix characterizing the pattern from this set of oc-
currences. The algorithm works as follows:

• At the beginning select randomly one subse-
quence of length W from each input sequence.
These subsequences will form our initial set of
occurrences. Denote oi occurrence in sequence
i.

• Iteration step.

– Pick randomly one sequence i.

– Compute position weight matrix based on
all occurrences except oi. Denote this po-
sition weight matrix P .

– Take each subsequence of sequence i of
lengthW , and compute a score of this sub-
sequence according to matrix P .

– Choose new occurrence o′i randomly
among all subsequences of i of length
W using probability distribution defined
by the scores (higher score means higher
probability).

– Replace oi with o′i in the set of occur-
rences.

• Repeat iteration steps, until some stopping con-
dition is met.

The Gibbs sampling algorithm does not guaran-
tee that the position weight matrix and set of occur-
rences giving best score will be found. Instead, the
algorithm can converge to a local maximum, rather
than to the global one. On the other hand, method
is fast, which makes it suitable for many applica-
tions.

Several problems related to Gibbs sampling and
its patterns have been identified and addressed in
subsequent work.

• Phase shifts. Assume, that optimal set of oc-
currences starts at positions 8, 14, 22 and 7
of corresponding sequences. When we get po-
sition 21, while processing the third sequence,
position, the whole system is likely to converge
to the set of occurrences 7, 13, 21 and 6 instead.

The problem was addressed in
[Lawrence et al., 1993] by introducing a
new randomized step into the algorithm, which
computes scores of occurrences shifted by

several characters. In this step we compute
scores for all possibilities and use random
choice with corresponding probability distribu-
tion. Similar approach was taken in PROBE
[Neuwald et al., 1997], where authors in similar
way reduced or extended pattern on both sides.

• Multiple patterns. Sometimes it is ap-
propriate to define a pattern as a sequence
of several consecutive subsequences of fixed
length separated by variable length gaps. It
means, that occurrence in Gibbs sampling
would be in this case represented by sev-
eral short subsequences in the sequence rather
than one. It is possible to modify Gibbs
sampling in this way [Lawrence et al., 1993,
Neuwald et al., 1997] using dynamic program-
ming in the process of ranking and choosing a
new candidate occurrence. Lengths of subse-
quences and their number is specified before-
hand.

• Pattern width. So far we have assumed, that
the pattern width is fixed and is given to us by
user beforehand. Most of the time, it is not rea-
sonable assumption, especially if we are look-
ing for multiple patterns separated by variable
length gaps.

In PROBE [Neuwald et al., 1997] genetic algo-
rithm is used to determine parameters of pat-
terns (i.e. the number of subsequences and their
lengths). When we have two sets of parame-
ters, we can try to recombine them (take part
of the first and part of the second set) and in
this way we can sometimes obtain a better set
of parameters. Sets of parameters for recombi-
nation are chosen by random with distribution
proportional to their score (called fitness). Fit-
ness of the set of parameters is determined by
running Gibbs sampling procedure with the set
of parameters.

• Gapped patterns. Not all positions within
continuous block of length W are necessarily
important for the function of this block. Rather
we want to create a pattern, which is gapped,
i.e. only J < W positions are used to form the
model.

This issue was addressed in [Liu et al., 1995].
The authors suggest to introduce yet another
randomized step, where we replace one of the
J positions, which we take into account, by one
of the W − J + 1 positions, which are not in-
cluded in the pattern. The choice is again done

17

randomly with distribution of probabilities pro-
portional to corresponding scores.

3.4.2 Other iterative methods

There several other approaches using iterative meth-
ods similar to Gibbs sampling. Typical approach is
to start with some pattern. Then find occurrences of
this pattern in the sequences. Based on this occur-
rences build a pattern that matches the occurrences
best. Repeat this process with the new pattern un-
til no improvement is obtained. The main difference
between this approach and Gibbs sampling is that
here we use all sequences for definition of the new
pattern and then we refine position of the new pat-
tern in all sequences. The process is completely de-
terministic, and of course has no guarantee to find
the global optimum.

This kind of approach was used for example in
[Pevzner and Sze, 2000] where authors want to find
ungapped deterministic pattern of given length that
matches all sequences with mismatches. We want to
minimize the total number of mismatches. By using
different methods they obtain a set of occurrences of
some unknown candidate pattern and they refine it
by iterative method. In each step they compute the
new pattern by taking the most frequent character
in each position (based on the frequencies in the
occurrences). The method is further improved to
remove non-significant columns from consideration,
obtaining a gapped pattern. Also it is possible to
use this method to find patterns which do not occur
in all input sequences.

The goal of [Singh et al., 1998] is to detect coiled
coil regions in histidine kinase receptors. Coiled coils
were previously detected in other protein families,
therefore the statistical properties of such regions
are known, although they may be slightly different
in this family. The goal is to find distribution of
residues and pairs of residues in different distances
apart in a sliding window of fixed length, provided
that such window is from coiled coil region. The
process start with taking known distribution from
other families. Based on this signal we can assign
score to each position of sliding window and the best
scoring positions are the candidates for coiled coil
region. We randomly choose sample of these candi-
dates and based on this sample we compute a new
distribution. This process is iterated. In each step
we add a pseudocount from the known distribution
of other families. In contrast to previous method,
this one is randomized, and also cannot diverge too
much from the original pattern due to the pseudo-
counts.

Finally, the iterative approach can be also used
to improve position weight matrices, as shown
in [Zhang, 1998]. Here the author starts from
PWM computed for several signals from vertebrate
genomes and refines them by iteration to obtain
PWM specific for human.

In general it seems that simple iterative methods
are suitable for improvement of patterns obtained
by other methods or from different data. They are
however not good enough to discover patterns with-
out any prior knowledge.

3.4.3 From iteration to PTAS

Some problems associated with pattern discovery
are NP-hard, which means that it is unlikely that
any polynomial time algorithm for such problem ex-
ists. Example of such problem is Consensus Pattern
problem, where we want to find pattern P (consist-
ing only of characters form Σ) and one occurrence
of P in each sequence so that the total number of
mismatches over all occurrences is minimized (mis-
match here means substitution).

Since there is not an algorithm guaranteed to find
the best such pattern in reasonable time, we may
wish to have a guarantee that the cost of the found
pattern (i.e. the total number of mismatches) is
guaranteed to be at most α times the cost of the
optimal pattern. Value α is called approximation
ratio. For example if α = 2 we are guaranteed to
find a pattern that has cost at most twice as many
as mismatches as the best possible pattern for this
set of input sequences.

For some problems it is possible to construct an
algorithm that works for any α (that is the user
can specify the desirable precision). However the
trick is that the smaller is approximation ratio, the
longer the algorithm runs. This type of algorithm is
called polynomial approximation scheme, or PTAS.
[Li et al., 1999] shows a PTAS for Consensus Pat-
tern problem. It is based on a simple iterative idea
repeated many times with different initial patterns.

The PTAS gets input sequences, the desired
length L of pattern and parameter r. It finds all
possible combinations of r substrings of length L
taken from input sequences. Each combination may
contain zero, one or several substrings from each se-
quence, some substrings may even repeat more than
once. If the total length of all sequences is N , there
are O(N r) combinations. For each combination of r
substrings perform the following steps:

• Compute the majority pattern P of the r sub-
strings. This pattern has in each position the

18

character occurring most frequently in this po-
sition in r substrings.

• For each input sequence find the best occur-
rence of P .

• Based on these occurrences compute a new ma-
jority pattern P ′.

• Find the best occurrences of P ′ in all sequences
and compute the number of mismatches (cost
of P ′).

The result will be the pattern P ′ which achieves the
minimum cost. Notice, that the algorithm performs
one step of iteration with the pattern obtained from
each possible combination. The running time of the
algorithm is O(N r+1L) and its approximation ratio
is 1 + (4|Σ|A− 4)/(

√
e(
√
4r + 1− 3)) for r ≥ 3.

This result is very interesting from the point of
view of theoretical computer science. However the
algorithm is not very practical for real use. For ex-
ample, if we choose r = 3 and Σ = {A,C,G, T} the
algorithm will find the pattern with at most 13 as
many mismatches as the optimal pattern. For r = 3
the running time is O(N4L), which is impractical
for large inputs. In order to achieve α = 2 we need
r = 20.7 which gives algorithm with time complex-
ity N21.7. Of course, the approximation ratio is only
upper bound of the possible error. The algorithm
can for some inputs find even optimal or close-to-
optimal results even for small r, however there is no
guarantee.

There is a new program called COPIA
[Liang et al., 2000] inspired by this PTAS, which
is more practical, however it is heuristic without
guaranteed performance. The enumeration of all
possible combinations of r substrings is replaced
by random sampling and one iteration of pattern
improvement for each combination is replaced by
iterating until there is no further improvement
(similarly as in [Pevzner and Sze, 2000]).

Finally, [Li et al., 1999] also describe PTAS for
the problem of finding the best consensus pattern
under the information content measure. In addition
they give an algorithm with a fixed approximation
ratio which finds the pattern that has occurrence
with at most d mismatches in each sequence (mini-
mizing value d).

3.5 Machine learning methods

Sometimes a pattern cannot be well described by a
simple deterministic pattern and one may wish to

express it in form of stochastic model, such as Hid-
den Markov model, or position weight matrix (which
is a simpler version of HMM). This kind of models is
usually discovered using iterative expectation maxi-
mization techniques that do not necessarily converge
to global maximum.

First we will consider simpler case of position
weight matrices. Notice, that the algorithms pre-
sented here differs from those from previous part in
a fact that it uses all possible occurrences of the pat-
tern to obtain new matrix, instead of only one cho-
sen occurrence in each string. In the second part we
discuss Hidden Markov models, including issues that
have to be addressed when we want to use already
trained Hidden Markov model for pattern matching.

3.5.1 Expectation maximization

[Lawrence and Reilly, 1990] used simple learning al-
gorithm called expectation maximization (EM) al-
gorithm. The purpose of the algorithm is to es-
timate parameters of the stochastic model of the
pattern, which occurs once at unknown position in
each sequence from the given family of sequences.
The position weight matrix is used as an underly-
ing stochastic model in [Lawrence and Reilly, 1990].
However, the approach can easily be extended to
more complicated models e.g. with flexible gaps, fi-
nite mixture model [Bailey and Elkan, 1994], etc. In
some cases, we can choose underlying model using
prior knowledge of the sequence family.

The algorithm is iterative, in each iteration per-
forming two steps as follows:

• E step. For every sequence s and for every
position in s compute the probability that the
occurrence of the pattern in s starts at this po-
sition. Base the computation on the model of
the pattern from previous iteration, or on the
initial model parameters, if this is the first iter-
ation. Initial model parameters are usually set
randomly.

• M step. For every position in the pattern com-
pute new probabilities of characters at this po-
sition. This is done based on all possible occur-
rences of the pattern weighted by probabilities
computed in E step. These values will form new
parameters of the model of the pattern.

As for the most of the iterative methods, the
main problem of EM algorithm is, that instead
of converging to global maximum likelihood, it
will rather converge to local maximum depending
on initial parameters of the model. The other

19

problem of EM algorithm, as it is described in
[Lawrence and Reilly, 1990], is the assumption that
every pattern occurs exactly once in every sequence.

[Bailey and Elkan, 1995] addressed these two
problems. They developed MEME algorithm, which
is modification of EM algorithm. Their algorithm is
based on the assumption, that the pattern found
should closely resemble at least one subsequence
found in the dataset. They also modified formulas
given in [Lawrence and Reilly, 1990] so, that they
can handle several or none possible occurrences of
the pattern in a sequence. The algorithm works as
follows:

1. For each subsequence in the dataset, form ini-
tial model. The initial model is a position
weight matrix, where for every position the
character on corresponding position in the sub-
sequence has probability p (p is usually between
0.5 and 0.8), and all other characters have prob-
ability (1− p)/(|Σ| − 1).

2. One iteration of EM algorithm is performed
on each such initial model. Likelihood score
is computed for resulting models.

3. Choose model with the largest likelihood score
and use it as an initial model for EM algorithm.

The algorithm can be forced to report more pat-
terns by erasing all occurrences of the found pattern
from the dataset and rerunning the whole process
again.

3.5.2 Hidden Markov models

Hidden Markov Models (HMMs) can be used as
a model of a family of sequences. For detailed
description of HMMs and related algorithms see
[Durbin et al., 1998]. There are three issues, which
need to be addressed, when using HMM as a repre-
sentation of sequence family:

• Topology of HMM. Topology specifies gen-
eral layout of the model, which we use to rep-
resent a sequence family.

• Training process. The learning process is
needed to estimate the parameters of the model
so that the sum of scores of sequences in the
family is optimized.

• Search for sequences. The searching pro-
cess should allow us to distinguish between the
sequences, that belong to the family and se-
quences, which do not.

Topology of HMM. Commonly
used HMM topology [Krogh et al., 1994,
Hughey and Krogh, 1996] for sequence analysis
is depicted in Figure 4.

The model consists of three types of states.
Match states model conserved parts of the se-
quences (motifs). Match states specify probability
distribution of characters on each conserved posi-
tion. There can be any number of match states in
the model, we assume that this number is given by
the user beforehand. Insertion states model pos-
sible gaps in between match states. Gaps can be
arbitrarily long. Probability assigned to a self-loop
in an insertion state models probability distributions
of possible gap lengths (the probability distribution
is geometric, mean value can be easily computed).
Finally, deletion states allow to bypass some of
the match states.

Once the all parameters (probabilities) of the
model are set, we can compute most probable path
through the model for a given sequence (in O(nm)
time using Viterbi algorithm [Durbin et al., 1998],
where n is the length of the sequence and m is the
number of states in the model). Positions corre-
sponding to match states in the model represent the
most probable occurrence of the pattern in the se-
quence.

We can also compute the probability P that the
sequence was generated by the model (in O(nm)
time using forward algorithm [Durbin et al., 1998]).
We call value − logP a NLL score of the sequence
with respect to the model. Higher probability of
generating the sequence corresponds to lower NLL
score of the sequence.

Training of the model. Now we have the topol-
ogy of HMM. We also have a family of sequences
which we want to characterize by the model. We
need to estimate parameters of the model so that
the model will generate sequences similar to those
in the family with high probability.

There is a standard learning method to
do this task (Baum-Welch algorithm, see
[Durbin et al., 1998]). The method is iterative.
First we start with an arbitrary model parame-
ters (if we have some prior knowledge about the
sequence family, we can use this knowledge to set
initial parameters). Then in each step, probabilities
of all paths for all sequences are computed, and
the model parameters are reestimated in order to
minimize the NLL score (maximize the probability)
of the training sequences.

The algorithm does not guarantee finding of

20

Start StopM M M M M

I I I I I I

D D D D D

1

2

2 3 4 5

1 2 3 4 5 E

1 3 54

Figure 4: Commonly used HMM topology. States M1, . . . ,M5 are match states, I1, . . . , IE are insertion
states, and D1, . . . , D5 are deletion states.

Length of the sequence

score
NLL

Figure 5: NLL score versus sequence length.
Sequences from the domain, on which learn-
ing have been applied, are denoted by ’+’.
[Hughey and Krogh, 1996]

global optimum. It can happen that the algorithm
will iterate to a local minimum. This depends on
initial parameter settings.

Search for sequences. Search for the pattern in
the form of HMM is more complicated, than in the
case of simpler patterns. Given a sequence, we can
compute the most probable alignment of the se-
quence to the pattern represented by HMM using
Viterbi algorithm and compute its NLL score by
forward algorithm (see [Durbin et al., 1998] for al-
gorithms details). NLL score gives us a measure of
how well the sequence can be aligned to the pattern.

However, NLL scores highly depend on a sequence
length. In general, shorter sequences have smaller
NLL scores than longer ones. Therefore, NLL score
with certain threshold can be used for discrimination
only if all the input sequences have approximately

the same length.

Figure 5 shows typical example of NLL score de-
pendency on sequence length. Sequences, which do
not belong to the sequence family, form a line cor-
responding to a linear dependency. NLL scores for
family members significantly drop below this line.

[Krogh et al., 1994, Hughey and Krogh, 1996]
use simple technique for discriminating family
members called windowing technique:

1. Take all intervals [k, ek] containing at least 1000
sequences. For every such interval compute the
average sequence length tk, the average NLL
score µk and standard deviation σk.

2. Linear interpolation (and extrapolation on both
ends) is used on points (tk, µk) to get expected
NLL score for every sequence length. Similarly,
expected standard deviation for every sequence
length is found.

3. For every sequence, z-score (the number of stan-
dard deviations from the expected value of NLL
score) is computed. If z-score is more than
given threshold ([Hughey and Krogh, 1996] use
threshold 4), consider the sequence as a mem-
ber of the sequence family.

4. Remove all sequence family members already
identified and perform the whole routine again,
until some stopping condition is met (typically,
number of iterations is given beforehand).

[Hughey and Krogh, 1996] report that this
method for sequence discrimination usually works,
however, there is no guarantee of that. The other
disadvantage of this technique is that the search
must be performed on many sequences at once to
get enough data (in other words, we need enough
background sequences, which are not members of
the sequence family).

21

3.5.3 Improvements of HMM models

Reducing number of parameters. The HMM
model with the topology as it was presented in pre-
vious section has usually too many parameters with
respect to amount of training data. For this rea-
son, it cannot be trained properly and overfitting to
training data is possible. There are several alterna-
tives, how to solve this problem.

• Model surgery. The idea of the model surgery
[Hughey and Krogh, 1996] is to adjust model
topology during the training, reducing num-
ber of parameters of the model. In particular,
authors observed, that following two problems
arise during the training:

– Some match states are used by only
few sequences. If a match states is used
only by number of sequences below the
threshold (typically one half), the state is
removed. In this way we force sequences
to either use insertion state at this point,
or change their alignment significantly.

– Some insertion state is used by too
many sequences. If an insertion state is
used by more sequences than given thresh-
old (typically one half), then the state is
replaced by a chain of match states. The
number of inserted match states is equal
to expected number of insertions in the re-
placed insertion state.

• Use different initial topology. Meta-
MEME [Grundy et al., 1997] uses another pro-
gram to report simple short patterns in the se-
quence. These patterns are transformed into
matching states in HMM. Different patterns are
combined together using insertion states as on
Figure 6.

Discovering subfamilies. Sometimes the fam-
ily of sequences can consists of several subfami-
lies. It means, that the family is represented by
several motifs rather than by one. To handle this
case, [Krogh et al., 1994] combine several HMMs
with standard topology to one larger HMM as it
is shown in Figure 7.

If we do not have any preliminary knowledge on
base of which we can set initial parameters of such
model, it might be hard to train the model ac-
curately. Therefore, use of Viterbi training algo-
rithm, which considers only one best path (in con-
trast to Baum-Welch algorithm which uses all paths

weighted by their probabilities), is more appropri-
ate in this case. The advantage of this algorithm is,
that once some part of the model get biased to one
subfamily, only sequences in this subfamily will be
used to train this part of the model.

3.6 Methods using additional infor-
mation

Pattern discovery is a difficult task. If we want to
find a longer flexible pattern, exhaustive methods
are no longer feasible and in many cases no meth-
ods with guaranteed performance are known. Often
the pattern we need to find is very subtle, hardly
distinguishable from random sequence. In this part
we will show how to exploit other sources of infor-
mation, other than bare sequences.

3.6.1 Finding motifs in aligned sequences

Finding pattern and finding local alignment are
closely related tasks. Once we have a multiple se-
quence local alignment we can easily find a pattern.
Local alignment already gives us position in each se-
quence which is a candidate occurrence of the pat-
tern. From this we can easily obtain the pattern
in form of consensus sequence, position-weight ma-
trix etc. The question starts to be interesting, if
we assume that the input can contain errors (i.e.
some sequences are not aligned correctly or they
are not members of family etc.). In this case we
may try to find pattern which does not match all
sequences, maybe even pattern characteristic for a
subfamily. This task is addressed by EMOTIF soft-
ware [Nevill-Manning et al., 1998].

EMOTIF searches for motifs containing charac-
ters, ambiguous characters (sets, e.g. [ILMV]) and
wild-card characters ’.’. The set of possible ambigu-
ous characters is fixed. It is obtained by inspect-
ing substitution frequencies between pairs of amino
acids in a database of aligned protein families. After
that clustering algorithm is applied, producing set
of clusters such that amino acids within one clus-
ter frequently substitute one for another and they
substitute less frequently with amino acids outside
this cluster. The resulting clusters are then used as
possible ambiguous characters.

Each character (normal, ambiguous or wild-card)
corresponds to one column of the local alignment.
For each such pattern it is possible to compute its
specificity (how likely it is to occur by random) and
coverage (how many training sequences it covers).
EMOTIF finds many motifs with different values
of specificity and coverage (however lower bound of

22

Start Stop

Pattern 1 Pattern 2

Figure 6: Meta-MEME uses much simpler initial topology. Patterns found by other programs are connected
together by insertion states.

Start End

HMM 3

HMM 2

HMM 1

Figure 7: Topology of HMM suitable for represent-
ing families of sequences with several subfamilies.

coverage is specified by user). For several motifs
with the same specificity only the one with great-
est coverage is reported and vice versa. Motifs are
found by pruned exhaustive search, trying to apply
all applicable ambiguous characters in each column,
and computing specificity and coverage.

3.6.2 Global properties of a sequence

As pointed out in [Pedersen et al., 1999], transcrip-
tion factor binding site signals are often too weak
to be distinguishable from random sequence. How-
ever the cell is able to recognize transcription start
sites correctly. Therefore the lack of local infor-
mation indicating transcription starting site implies
that this information is somehow represented glob-
ally, in long stretches of DNA. One example of
such phenomenon are CpG islands – most verte-
brate genes have 1-2kb long regions with higher
frequency of CpG than found elsewhere in the
genome [Pedersen et al., 1999, Durbin et al., 1998].
[Pedersen et al., 1999] also shows that region down-
stream from transcription start point has usually
low flexibility (flexibility, or bendability of DNA can
be estimated from sequence-based models of DNA
structure).

In pattern matching problem we can use global in-
formation, such as CpG islands and flexibility to dis-
tinguish random occurrences of pattern from those
that have functional significance. In pattern dis-
covery we may use this kind to prior knowledge to
choose appropriate parts of genome as our input set
in which we search for patterns.

3.6.3 Using phylogenetic tree

One of the basic assumptions in finding patterns in
biological sequences is that regions conserved in evo-
lution are functionally important. Therefore it is
natural to use known phylogenetic relations among
sequences to guide the pattern search.

Assume we want to find a regulatory element.
Instead of using regulatory regions from many co-
regulated genes of the same species we will use reg-
ulatory regions of the same gene taken from many
related species. We assume that the evolutionary
tree of these species is known. Now we may try to
find the short pattern best conserved in the evolu-
tion.

This approach is used in [Blanchette et al., 2000].
They use a parsimony measure to select the best
conserved pattern, defined as follows. We are given
length of pattern k. We want to associate a se-
quence tw of length k with each node w. In each
leaf, tw is required to be a subsequence of the input
sequence associated with this leaf (tw corresponds to
an occurrence of the pattern). We want to minimize
the sum d(tv, tw) over all tree edges (v, w). Here
d(tv, tw) is distance between two strings of length k.
Authors consider Hamming distance (i.e. number of
substitutions), however they note that the algorithm
can be used also for edit distance. The problem to
find such strings minimizing the parsimony score is
NP-hard, therefore they devise an exhaustive search.

We first root the tree in an arbitrary internal node
and then compute the scores for subtrees of the tree,
starting from smaller subtrees. For node w and each
possible string t of length k we compute the best

23

possible parsimony score d∗w(t) that can be achieved
in the subtree rooted at w provided that the string
t is stored in w. Let n be the number of the input
sequences. Since there are 2n − 2 nodes in a tree
and |Σ|k possible strings, we compute (2n − 2)|Σ|k
scores.

The scores are found easily for leaf nodes: if t is a
substring of the input string associated with the leaf
w, then d∗w(t) = 0, otherwise the score will be ∞.
Now, let w be an internal node with children w1 and
w2. Assume that the node w1 stores sequence tw1

,
w2 stores tw2

and w stores tw. Then the parsimony
of the subtree rooted at w will be

[d∗w1
(tw1

) + d(tw1
, tw)] + [d∗w2

(tw2
) + d(tw2

, tw)].

For each possible tw we want to find tw1
and tw2

that minimize this sum. We can choose tw1
and tw2

independently of each other. Therefore we can mini-
mize each of the square brackets separately and then
just sum the result. Our task is therefore to find twi

that minimizes d∗wi
(twi

) + d(twi
, tw). Simplest algo-

rithm takes all possible values of twi
and computes

the sum. This leads to time complexity O(nk|Σ|2k)
because for each edge between w and its child wi we
need to consider all possible pairs of tw and twi

and
to compute the distance in time O(k).

We can further improve the running time to
O(nk|Σ|k) by computing the value mintwi

[d∗wi
(twi

)+
d(twi

, tw)] for all possible values tw at once. In par-
ticular, for some fixed tw this minimum is always
either equal d∗wi

(tw) (in case twi
= tw) or it is one

more than the minimum for some string t′w within
Hamming distance 1 from tw.

Therefore we can construct a graph in which each
value of tw correspond to one vertex. Two ver-
tices are connected by an edge with weight 1, if
their corresponding strings have Hamming distance
1. We add additional, starting vertex, and connect
it to all vertices. Weight of an edge from start to
vertex corresponding to tw will be d∗wi

(tw). Now
mintwi

[d∗wi
(twi

) + d(twi
, tw)] is equal to the length

of the shortest path from the starting vertex to tw.
This values can be found by Dijkstra algorithm for
all vertices at once in time O(k|Σ|k), using the fact
that the distance is a small integer (at most 2nk),
and degree of each vertex other than start is k + 1.
This gives overall complexity O(nk|Σ|k). The algo-
rithm can be further pruned by stopping the Dijk-
stra algorithm as soon as the distances considered
are higher than certain threshold.

The described algorithm computes the best par-
simony score for the root node. We can use stored
intermediate results to reconstruct entire optimal so-

lution in a root-to-leafs manner. Strings tw stored in
the leaves represent the occurrences of our pattern.

This method, based on phylogenetic trees and
parsimony measure, has two advantages. First, it
can be used to discover regulatory elements that
regulate only very small number of genes in one
genome. This cannot be done using only informa-
tion from one genome. Second, pattern finding al-
gorithms have often problems if the input contains a
group of highly similar sequences. These sequences
then may force the algorithm to find pattern that
just characterize similarity of these sequences, but
not features common to all sequences in the input.
Therefore it is often necessary to find closely ho-
mologous groups of sequences and choose only one
member from each. In the phylogenetic tree close
homologs are grouped together their weight is not
so great – the pattern still have to fit well also other
parts of the tree.

3.6.4 Use of secondary/tertiary structure

The positions important for secondary and tertiary
structure of proteins are usually well conserved. If
we know the structure of proteins in question, we
can try to locate regions important for achieving this
structure. These regions are good candidates for oc-
currences of our pattern. This approach was used
in [Ison et al., 2000]. Authors use points of contact
between two secondary structure elements as can-
didate spots for conserved positions. They try to
construct a sparse deterministic pattern containing
ambiguous characters and flexible gaps. A pattern
should cover entire length of a protein. They find
their patterns mainly manually. First they use a
software to find points of interaction between sec-
ondary structure elements (each point is given by
a pair of interacting residues). Then they manu-
ally align sequences so that the points of contact
align together, if possible. Based on this align-
ment they choose positions that are well-preserved
(among those columns that contain many points of
contact). This set of positions constitutes a pattern,
which is then tested against a database of proteins.
If the performance of the pattern is not satisfactory,
it is further improved (manually). Although the au-
thors in [Ison et al., 2000] create patterns manually,
it is for sure possible to implement similar process as
a program. The main difficulty would be to choose
various scoring functions to incorporate biological
knowledge and intuition used at various stages of
the pattern discovery by authors.

Secondary structure and search for motifs are
closely tight together also in algorithms from

24

[Gorodkin et al., 1997b]. Here authors search for
conserved patterns in RNA sequences. These are
however more related in their structure rather than
in sequence. On the other hand finding secondary
RNA structure of a set of related RNA sequences is
best done by first aligning the sequences. Alignment
in turn requires to discover similarities. Therefore
their algorithm tries simultaneously discover align-
ment, secondary structure features and conserved
pattern.

3.7 Finding Tandem Repeats

An interesting comparison of deterministic
and probabilistic algorithms can be made
for the problem of finding tandem repeats.
[Coward and Drablos, 1998] present an iterative
method for finding repeats that is based on self-
alignment of a given genomic sequence, while
[Benson, 1999] gives a probabilistic approach to the
same problem.

The first phase of Coward and Benson’s algorithm
is a process of phase alignment: a sequence is di-
vided into consecutive subsequences, each of length
p, and a measure of the ‘mutual agreement’ between
the subsequences is calculated. If the sequence is p-
periodic, this measure will be 0. If the sequence is
periodic except for a few substitutions, the measure
of mutual agreement will still be small. However,
an insertion or deletion in the sequence will have a
large effect on the measure. In this case, the effect of
an insertion or deletion in the sequence can be com-
pensated in the succeeding subsequences by a right
or left shift [Coward and Drablos, 1998, p.499]. The
alignment algorithm will then iterate until an opti-
mal or near-optimal alignment has been found.

The second phase of the algorithm involves find-
ing a consensus pattern, a candidate for the under-
lying periodic pattern. The third, optional, stage
is the adjustment of the phase alignment accord-
ing to the consensus pattern. The final stage is the
computation of the phase scores for different pos-
sible periodicity values. The authors report that
their algorithm works best for tandem repeats of
at least 12–15 bases, and that when there are few
insertions and deletions, the phase agreement is a
good indicator of the presence of a repeat. They
add that “the sensitivity of the method is also good
when there are many substitutions” (p.506). They
acknowledge that their method of phase shifting, in
which the original sequence is split into indepen-
dent parts, may be artificial, as it does not neces-
sarily correspond to our understanding of biological

sequences, but, in adopting this approach, they have
gained a significant simplicity and efficiency of im-
plementation.

In contrast, [Benson, 1999] probabilistic method
for finding tandem repeats is a good deal more com-
plicated in design and implementation. It models
the alignment of two tandem copies of a pattern of
length n by a sequence of n-independent Bernoulli
trials (coin tosses). The algorithm has two separate
detection and analysis components: the detection
component uses a set of several statistically-based
criteria to find candidate tandem repeats; the analy-
sis component tries to produce a potential alignment
for each candidate, and, if successful, various statis-
tics about the alignment (e.g., percent identity) and
the nucleotide sequence (e.g., composition, entropy
measure).

At present, a limitation of Benson’s algorithm is
its lack of a good statistical measure for tandem
repeats. Right now, the authors rely on a cut-off
alignment score based on simulations with random
sequences. Future development of this probablis-
tic algorithm may be more likely than Coward and
Drablos’s simpler method to address such complex
issues as analyzing the mutational history of re-
peats, which will require describing how the inter-
woven progression of substitutions, indels, and du-
plication/excision events led from the original single
sequence to the current sequence of approximate re-
peats.

4 Statistical Significance

Given the multitude of methods discovering con-
served pattern in biological sequences, one needs
measures to assess the quality of such motif. This
is important in experimental comparison studies of
various methods, in ranking found motifs for user,
and even as a guide in the pattern discovery process
itself. Many different approaches have been devel-
oped to determine when the number of occurrences
of a given pattern in a set of sequences is significant.
Here we will discuss in detail three approaches that
have been widely used by many authors, others will
be just mentioned.

4.1 z-score

Suppose we have 100 sequences of length L and a
simple pattern s of length k, for k ≤ L. Assume it
has Ns occurrences in the sequences. Let S be the
set of |Σ|k possible patterns, i.e. strings of length
k. The number of possible occurrences of s in each

25

sequence is L − k + 1, therefore the total potential
occurrences will be 100(L − k + 1). We want to be
able to decide whether the number of occurrencesNs

observed for pattern s is something that we would
expect to happen if the sequences were drawn under
random (background) conditions.

This problem is related to hypothesis testing in
statistics, the significance value is helping to decide
when to reject or accept the null hypothesis that
the observed Ns is usual under random conditions.
A very standard criterion is to reject the null hy-
pothesis when a P value of 0.05 is observed. What
this value is suggesting is that, if we do 100 exper-
iments, in each drawing 100 random sequences, we
would expect to see s occur in at least Ns sequences
just in 5 experiments. Another interpretation of the
P value is the probability of making a mistake re-
jecting the null hypothesis.

Different statistical measure which we can use to
measure statistical significance of a pattern is z-
score. Let E(Ns) and σ(Ns)

2 be mean and vari-
ance of the number of occurrences of the pattern s
in the sequences generated according to the back-
ground distribution. Then the z-score associated
with s is given by the following formula

zs =
Ns − E(Xs)

σ(Xs)

Then z-score zs has limiting normal distribution
with mean 0 and variance 1. It is the number of
standard deviations by which the observed value Ns

differs from the expected value. Since it is normal-
ized it is suitable for comparing different motifs. Us-
ing Chebyshev’s inequality we can obtain bounds on
P value from the computed z score.

Examples of methods using similar statistical
techniques to assess statistical significance of pat-
terns can be found in [Atteson, 1998, Tompa, 1999,
Sinha and Tompa, 2000, van Helden et al., 2000,
Gelfand and Koonin, 1997]. The approaches in
these papers differ in biological motivation, type
of patterns considered (allowance of gaps, exact
matches versus approximate matches, etc.), and
background distribution. Considered model for
generating random sequences (background dis-
tribution) is usually either characters generated
independently with given probability of individual
characters, or sequences generated by Markov chain
of order k. Transition probabilities of Markov chain
are determined by the (k+1)-mer frequencies in the
input set of sequences, or in some larger database
of sequences.

Article [Cowan, 1991] describes exact formula
to compute expected number of occurrences of a

given pattern among sequences generated by the
first order Markov chain with the same transition
probabilities as the input sequence, and also the
same starting character. They use Whittle’s for-
mula [Whittle, 1955] to achieve this. Means and
variance of the distribution of the number of oc-
currences of given pattern are also obtained in
[Nicodème et al., 1999], using generating functions
theory.

[Sinha and Tompa, 2000] compute z-score of a
pattern defined as a string of length k over the al-
phabet {A,C,G, T,R, Y, S,W,N}, where R means
purine, Y pyrimidine, S strong bond and W weak
bond nucleotides. Input consists of a set of upstream
regulatory sequences each having the same length.
As a background distribution they use Markov chain
of order 3, in order to account for frequent strings,
such as TATA, AAAA, etc, that occur often in regula-
tory sequences.

They show how to compute z-score under these
assumptions in O(c2k2) time where c is the number
of ambiguous characters. The most difficult part of
this computation is to determine σ(Xs). Therefore
they use the following expression

z∗s =
Ns − E(Xs)

√

E(Xs)− E(Xs)2
,

with property z∗s ≥ zs. Hence, z∗s is computed first
to determine if it is worthwhile to go into the vari-
ance computation.

[Pesole et al., 2000] use the same approach but
they performed a chi-square test to assess the sta-
tistical significance such that

χ2 = (Ns − E(Ns))
2/E(Ns).

Since they consider a large class of patterns, they
do not determine the expected value precisely, but
obtain estimate by actually simulating Markov chain
and generating sequences.

4.2 Information content

Another popular approach for determining signifi-
cance of motifs is based on information content (also
called relative entropy) of the motif. A good descrip-
tion can be found in [Tompa, 1999].

Again, suppose a motif s of length k, has ap-
proximate occurrences in a subset of the S input
sequences. The relative entropy of this motif is de-
fined to be

k
∑

j=1

∑

c∈Σ

pc,j log2
pc,j

bc

26

where pc,j is the frequency with which character c
occurs in position j among the motif occurrences in
S, and bc is the background frequency of the char-
acter c.

Relative entropy provides a measure of how well
conserved and how likely a motif is with respect to
the background distribution. In particular, the more
different the distribution pc,j from the background
distribution bc, the higher the relative entropy of
position j.

This measure is good for comparing two motifs
that have the same number of occurrences (occur
in equinumerous subsets of the N input sequences),
but not if the two motifs occur in a vastly different
number of sequences. The reason is that the abso-
lute number of occurrences are not taken into ac-
count, depending instead on the relative frequency
pc,j of occurrence of each of the characters. Most of
the applications that use relative entropy depend on
the fact the motif occurs in all, or nearly all, of the
N sequences.

Information content is also used for position
weight matrices [Hu et al., 2000] (see also part 3.1.3
of this report). Assume that matrix entry A[c, j]
contains relative frequency of character c at posi-
tion j of the pattern. In this case, the entropy for
a particular column j in the matrix is defined as
follows

Ej = −
∑

c∈Σ

A[c, j] log2A[c, j].

The consensus quality of column j is Cj =
log2 |Σ| − Ej and the final consensus quality of a
matrix A is defined as

con(A) =
1

k

k
∑

j=1

Cj ,

where k is the width of the motif. The consensus
quality guides the search for well-conserved motif
candidates.

4.3 Sensitivity, specificity and re-
lated measures

One application of pattern discovery methods is to
find patterns that characterize given family of re-
lated proteins. We want to measure suitability of
the discovered motifs for this task by finding oc-
currences of the motif in the database of all known
proteins. We may distinguish between true positives
TP (proteins that belong to our family and contain
the pattern), true negatives TN (sequences that do

not belong to the family and do not contain the
pattern), false negatives FN (sequences that belong
to the family and do not contain the pattern), and
false positives FP (sequences that do not belong to
family and contain the pattern). Based on counts
of TP, TN, FP, FN we can define various measures
[Brazma et al., 1998]. Sensitivity (also called cover-
age) is defined as TP/(TP + FN) and specificity is
defined as TN/(TN + FP). A pattern has max-
imum sensitivity, if it occurs in all pattern in the
family and maximum specificity, if it does not oc-
cur in any sequence outside the family. If we want
to combine these two measure to one score, we may
use correlation coefficient

TP · TN − FP · FN
√

(TP + FP)(TP + FN)(TN + FN)(TN + FP)

This expression has value 1 when there are no false
positives or false negatives and decreases towards
zero, as the number of false positives and false neg-
atives grows.

5 Biological Verification

In this section we describe methods how the patterns
discover by computer science tools can be verified
experimentally. We describe several experimental
approaches, suitable for different kinds of patterns.

Functional groups. Once proteins have been as-
signed to a functional group based on the presence
of a motif(s) in their sequence, the putative function
of the proteins can be verified by expressing, isolat-
ing and purifying the protein(s) and testing for their
activity using an appropriate biological assay. For
example, if a protein is thought to be a particular
enzyme, one could add the purified protein to a so-
lution containing the enzyme’s predicted substrate
and measure the appearance of expected reaction
products. To substantiate the involvement of a mo-
tif in this activity, various mutations could be intro-
duced into the conserved sequence at the nucleotide
level by site-directed mutagenesis and disruption of
the protein’s activity could be measured. Chimeric
proteins, created by fusing a motif-containing func-
tional domain to another protein sequence, can be
assayed for acquisition of the function specified by
the motif. Again, all manipulations of protein se-
quence are performed at the nucleotide level.

Binding sites. Where the motif is thought to be
involved in the binding of a protein to a specific

27

DNA sequence, DNA footprinting assays could be
performed. Labeled DNA is incubated with the pu-
tative DNA binding protein and then digested with
DNase. The resulting DNA fragments are separated
by gel electrophoresis. Regions bound by the protein
are protected from DNase digestion and show up as
blank areas in the gel compared to samples not in-
cubated with the protein. In this way, proteins with
DNA binding motifs can be confirmed.

It may be possible to detect proteins with DNA
binding motifs on a large, genomic scale using a
modification of DNA microarray technology. DNA
(oligonucleotide) substrates of known sequence are
applied to a slide and labeled test proteins are
then passed over the slide and allowed to bind to
DNA. Unbound proteins are removed by washing
and bound proteins are visualized, perhaps using la-
beled antibodies. In addition to verifying the pres-
ence of a DNA binding motif in the protein, its cog-
nate DNA recognition site can easily be identified.

Cellular location. If a motif specifies the cellular
location of a protein, it can be fused to a reporter
protein and its location identified by microscopy.
[Geraghty et al., 1999] tagged putative peroxisomal
proteins with the reporter protein, green fluorescent
protein (GFP), and visualized the subsequent sub-
cellular distribution of the fusion proteins by fluo-
rescence microscopy.

Protein structure motifs. Motifs involved in
protein structure can be verified once the three di-
mensional structure has been confirmed by x-ray
crystallography.

Finding sequences containing motif. Analo-
gous to an approach used in silico to detect specific
patterns in genomic sequences, short oligonucleotide
primers designed to contain a conserved motif can
be used to screen a genome(s) for other sequences
containing the same motif via the polymerase chain
reaction (PCR). The presence of conserved motifs
can be confirmed by sequencing and alignment of
the PCR amplified fragments. Methods described
above may substantiate the functional relatedness
of these proteins.

Promoter sequences. Putative promoter se-
quences can be tested for their ability to initi-
ate gene expression in vivo using reporter genes.
DNA libraries containing fragments of a prokaryotic
genome inserted upstream of promoterless luxAB or
lacZ reporter genes are assayed for light production

or β-galactosidase activity (blue colonies), respec-
tively, indicative of the presence of a promoter se-
quence. Specific sequences required for promoter
activity can be further pinpointed by removing nu-
cleotides from the upstream region (either as a block
of nucleotides by restriction enzyme digestion or
by systematic removal of single nucleotides by ex-
onuclease digestion) and determining if the reporter
gene is still expressed. Although in theory, all con-
stitutive promoters could be found by this method,
inducible promoters that are activated by regula-
tory factors will of course require that the activating
factor be added. Transcription factor binding sites
in eukaryotic sequences can be verified by a similar
method; however, because regulatory factors may
not be well conserved among eukaryotes, an appro-
priate expression system must be chosen to ensure
that all components of the transcriptional machin-
ery are present. In addition to assaying for reporter
gene expression, transcription and subsequent syn-
thesis of the natural protein resulting from promoter
activation by inducing factors can be assayed by
Northern and Western hybridization, respectively
[Roulet et al., 2000].

Alternatively, the binding of a nucleotide mo-
tif such as a transcription factor binding sequence
can be appraised in vitro by gel shift assay.
[Roulet et al., 2000] designed a series of oligonu-
cleotides with variant sequences and measured their
affinity for CTF/NFI transcription factors by such
a means. Labeled oligonucleotides consisting of
the consensus binding site were incubated with pu-
rified transcription factor and increasing amounts
of variant unlabeled ”competitor” oligonucleotides.
Binding was detected by the presence of a complex
of higher molecular weight than unbound oligonu-
cleotides as indicated by a shift in position following
gel electrophoresis. The relative binding affinities
were estimated from the relative amounts of com-
petitor oligonucleotides required to inhibit binding
of the transcription factor to the labeled consensus
oligonucleotides.

Binding affinity can also be measured using
PCR. To confirm the identify of a promoter el-
ement that stimulates promoter activity through
strong interactions with an RNA polymerase sub-
unit, [Estrem et al., 1998] incubated promoter frag-
ments with RNA polymerase under increasingly
stringent conditions (i.e. decreasing concentrations
of RNA polymerase and decreasing duration of in-
cubation). Bound promoters were then selected by
PCR and sequenced to corroborate the presence of
the promoter element.

28

6 Success Stories

In this section we introduce two examples were us-
age of pattern finding tools helped researchers to
make new discoveries. There are of course many
such examples. The two examples chosen here il-
lustrate, types of discoveries that can be made and
how these discoveries can be verified by biological
experiment.

6.1 Tuberculosis

Proteins secreted by Mycobacterium tuberculosis,
the causative agent of tuberculosis, are often tar-
gets of immune responses by an infected host that
can lead to protection from the disease. Thus, the
identification and study of these secretory proteins
is a first step to the design of more effective vaccines
targeted against this dreadful pathogen.

Proteins are directed to the outer membrane of
bacterial cells by a short N-terminal sequence of
amino acids called a signal peptide. Following se-
cretion, the signal peptide, which remains attached
to the internal face of the membrane, is cleaved to re-
lease the protein to the external environment. Con-
served features of both the signal peptide and cleav-
age site, such as length and amino acid composition,
make them amenable to identification by sequence
analysis. The recently released nucleotide sequence
of the M. tuberculosis genome was screened for these
conserved features and a number of putative secre-
tory proteins were detected [Gomez et al., 2000].

That these proteins are secreted was confirmed
by fusing the gene for the secretory protein to the
E. coli gene encoding alkaline phosphatase (PhoA)
that had its own signal peptide removed. Clones
carrying the fusions were evaluated for extracellu-
lar alkaline phosphatase activity. Ninety percent of
the predicted secretory proteins were confirmed. A
disadvantage of using this computer-based approach
is that it is limited to those proteins secreted via
the general export pathway. Evidence suggests the
existence of other as yet undefined mechanisms for
protein secretion in M. tuberculosis.

6.2 Coiled coils in histidine kinases

Histidine kinases are important proteins involved
the responses of a bacterium to its environment.
These proteins “report” to the cytoplasm changes
in the physico-chemical conditions of the exter-
nal world, and lead to control of gene expression
through regulation of kinase activity (via phospho-
rylation). The identification and manipulation of

histidine kinases can have several applications, in-
cluding the control of biofilms, persistent bacterial
community structures formed in response to envi-
ronmental signals, and in the design of treatments
to control bacterial infections in animals and plants.

Histidine kinases are transmembrane proteins
with three domains: a sensor domain which is in
contact with the outside environment, a kinase do-
main which is in contact with the cytoplasm, and a
linker region which traverses the membrane and con-
nects the two domains. [Singh et al., 1998] wanted
to identify motifs common to histidine kinases that
would allow rapid detection of these proteins in dif-
ferent bacteria. Studies of other kinases had re-
vealed the presence of coiled coil domains involved
in phosphorylation.

The authors utilized an iterative learning algo-
rithm to detect potential coiled coils in histidine ki-
nases. They used established sequence patterns for
known coiled coil proteins and known histidine ki-
nases. The assumption was that, despite limited
sequence homology in the coiled coil region, there
was likely to be some structural and mechanistic
similarity among the kinases and therefore patterns
that might not be readily apparent from multiple
sequence alignment.

Coiled coil motifs were found to occur broadly in
histidine kinases, appearing in all reported eukary-
otic histidine kinases as well as in most of those from
the bacteria E. coli and Salmonella typhimurium.
The results were verified biologically by construct-
ing chimeric proteins in which coiled coil sequences
from one histidine kinase were fused to the cytoplas-
mic domain of another histidine kinase, and testing
these for phosphorylation activity, which is indica-
tive of kinase activity. The frequency of the motif
was surprising, given the high diversity of histidine
kinase primary sequences. This suggests that coiled
coils are important for the function of histidine ki-
nases.

6.3 Conclusion

Although a higher profile objective of pattern dis-
covery is to annotate proteins in entire genomes,
the examples above illustrate the usefulness of iden-
tifying specific motifs in smaller scale experiments.
Discovering related proteins or understanding the
function and regulation of a protein using biologi-
cal techniques can be onerous, often involving much
trial and error. Pattern detection algorithms will
prove to be important tools for molecular biologists
working in “wet labs”, allowing them to design bet-

29

ter experiments.

7 Conclusion

Pattern discovery is an important area of bioinfor-
matics. The algorithms for pattern discovery use
wide range of computer science techniques, rang-
ing from exhaustive search, elaborate pruning tech-
niques, efficient data structures, to machine learning
learning methods and iterative heuristics.

The tools developed by computer scientists are
today commonly used in many biological labora-
tories. They are important to handle large scale
data, for example in annotation of newly sequenced
genomes, and organization of proteins into families
of related sequences. They are also important in
smaller scale projects, because they can be used to
detect possible sites of interest and assign putative
structure or function to proteins. Thus they can be
used to guide biological experiments, decreasing the
time and money spent in discovering new biological
knowledge.

Many patterns are hard to find, because they are
very sparse and/or variable. Also they might not
be specific enough to distinguish them from ran-
dom noise only based on local sequence informa-
tion. Small conserved regions, that were before in-
terspersed through protein, and thus hard to find,
can occur close to each other in secondary or tertiary
structure conformation. Also DNA in eukaryotic nu-
cleus is closely packed in a kind of tertiary structure
and this structure can have influence on position of
regulatory element binding sites. Therefore it seems
that the future approaches to pattern discovery will
also use other information available about the se-
quences, such as three dimensional structure.

References

[Atteson, 1998] Atteson, K. (1998). Calculating
the exact probability of language-like patterns in
biomolecular sequences. In Proceedings of the 6th
International Conference on Intelligent Systems
for Molecular Biology (ISMB), pages 17–24.

[Bailey and Elkan, 1994] Bailey, T. L. and Elkan,
C. (1994). Fitting a mixture model by expectation
maximization to discover motifs in biopolymers.
In Proceedings of the 2nd International Confer-
ence on Intelligent Systems for Molecular Biology
(ISMB), pages 28–36.

[Bailey and Elkan, 1995] Bailey, T. L. and Elkan,
C. (1995). Unsupervised learning of multiple mo-
tifs in biopolymers using expectation maximiza-
tion. Machine Learning, 21(1/2):51–80.

[Barker et al., 1996] Barker, W. C., Pfeiffer, F., and
George, D. G. (1996). Superfamily classification
in PIR-International Protein Sequence Database.
Methods in Enzymology, 266:59–71.

[Benson, 1999] Benson, G. (1999). Tandem repeats
finder: a program to analyze DNA sequences. Nu-
cleic Acids Research, 27(2):573–580.

[Blanchette et al., 2000] Blanchette, M.,
Schwikowski, B., and Tompa, M. (2000). An
exact algorithm to identify motifs in orthologous
sequences from multiple species. In Proceedings
of the 8th International Conference on Intelligent
Systems for Molecular Biology (ISMB), pages
37–45.

[Bornberg-Bauer et al., 1998] Bornberg-Bauer, E.,
Rivals, E., and Vingron, M. (1998). Computa-
tional approaches to identify leucine zippers. Nu-
cleic Acids Research, 26(11):2740–2746.

[Brazma et al., 1998] Brazma, A., Jonassen, I., Ei-
dhammer, I., and Gilbert, D. (1998). Ap-
proaches to the automatic discovery of patterns
in biosequences. Journal of Computational Biol-
ogy, 5(2):279–305.

[Califano, 2000] Califano, A. (2000). SPLASH:
structural pattern localization analysis by sequen-
tial histograms. Bioinformatics, 16(4):341–347.

[Cowan, 1991] Cowan, R. (1991). Expected frequen-
cies of DNA patterns using Whittle’s formula.
Journal of Applied Probability, 28(4):886–892.

[Coward and Drablos, 1998] Coward, E. and Drab-
los, F. (1998). Detecting periodic patterns in bio-
logical sequences. Bioinformatics, 14(6):498–507.

[Dorohonceanu and Nevill-Manning, 2000]
Dorohonceanu, B. and Nevill-Manning, C. G.
(2000). Accelerating protein classification using
suffix trees. In Proceedings of the 8th Inter-
national Conference on Intelligent Systems for
Molecular Biology (ISMB), pages 128–133.

[Durbin et al., 1998] Durbin, R., Eddy, S. R.,
Krogh, A., and Mitchison, G. (1998). Biological
Sequence Analysis. Cambridge University Press.

30

[Ermolaeva et al., 2000] Ermolaeva, M. D., Khalak,
H. G., White, O., Smith, H. O., and Salzberg,
S. L. (2000). Prediction of transcription termina-
tors in bacterial genomes. Journal of Molecular
Biology, 301(1):27–33.

[Estrem et al., 1998] Estrem, S. T., Gaal, T., Ross,
W., and Gourse, R. L. (1998). Identification of
an UP element consensus sequence for bacterial
promoters. Proceedings of the National Academy
of Sciences of the United States of America,
95(17):9761–9766.

[Fickett and Hatzigeorgiou, 1997] Fickett, J. W.
and Hatzigeorgiou, A. G. (1997). Eukaryotic pro-
moter recognition. Genome Research, 7(9):861–
868.

[Gelfand and Koonin, 1997] Gelfand, M. S. and
Koonin, E. V. (1997). Avoidance of palindromic
words in bacterial and archaeal genomes: a
close connection with restriction enzymes. Nu-
cleic Acids Research, 25(12):2430–2439. Pub-
lished erratum appears in Nucleic Acids Research,
25(24):5135-5136.

[Gelfand et al., 2000] Gelfand, M. S., Koonin,
E. V., and Mironov, A. A. (2000). Prediction
of transcription regulatory sites in Archaea by
a comparative genomic approach. Nucleic Acids
Research, 28(3):695–705.

[Geraghty et al., 1999] Geraghty, M. T., Bassett,
D., Morrell, J. C., Gatto Jr., G. J., Bai, J.,
Geisbrecht, B. V., Hieter, P., and Gould, S. J.
(1999). Detecting patterns of protein distribu-
tion and gene expression in silico. Proceedings of
the National Academy of Sciences of the United
States of America, 96(6):2937–2942.

[Gomez et al., 2000] Gomez, M., Johnson, S., and
Gennaro, M. L. (2000). Identification of se-
creted proteins of Mycobacterium tuberculosis by
a bioinformatic approach. Infection and Immu-
nity, 68(4):2323–2327.

[Gorodkin et al., 1997a] Gorodkin, J., Heyer, L. J.,
Brunak, S., and Stormo, G. D. (1997a). Display-
ing the information contents of structural RNA
alignments: the structure logos. Computer Appli-
cations in the Biosciences, 13(6):583–586.

[Gorodkin et al., 1997b] Gorodkin, J., Heyer, L. J.,
and Stormo, G. D. (1997b). Finding the most sig-
nificant common sequence and structure motifs in
a set of RNA sequences. Nucleic Acids Research,
25(18):3724–3732.

[Grundy et al., 1997] Grundy, W. N., Bailey, T. L.,
Elkan, C. P., and Baker, M. E. (1997). Meta-
MEME: motif-based hidden Markov models of
protein families. Computer Applications in the
Biosciences, 13(4):397–406.

[Hu et al., 2000] Hu, Y. J., Sandmeyer, S.,
McLaughlin, C., and Kibler, D. (2000). Combi-
natorial motif analysis and hypothesis generation
on a genomic scale. Bioinformatics, 16(3):222–
222.

[Hudak and Mcclure, 1999] Hudak, J. and Mcclure,
M. A. (1999). A comparative analysis of compu-
tational motif-detection methods. Pacific Sympo-
sium on Biocomputing (PSB), pages 138–139.

[Hughes et al., 2000] Hughes, J. D., Estep, P. W.,
Tavazoie, S., and Church, G. M. (2000). Compu-
tational identification of cis-regulatory elements
associated with groups of functionally related
genes in Saccharomyces cerevisiae. Journal of
Molecular Biology, 296(5):1205–1214.

[Hughey and Krogh, 1996] Hughey, R. and Krogh,
A. (1996). Hidden Markov models for sequence
analysis: extension and analysis of the basic
method. Computer Applications in the Bio-
sciences, 12(2):95–107.

[Ison et al., 2000] Ison, J. C., Blades, M. J.,
Bleasby, A. J., Daniel, S. C., Parish, J. H., and
Findlay, J. B. (2000). Key residues approach to
the definition of protein families and analys is of
sparse family signatures. Proteins, 40(2):330–331.

[Jonassen, 1996] Jonassen, I. (1996). Efficient dis-
covery of conserved patterns using a pattern
graph. Technical Report 118, Department of In-
formatics, University of Bergen, Norway.

[Kochetov et al., 1999] Kochetov, A. V., Pono-
marenko, M. P., Frolov, A. S., Kisselev, L. L., and
Kolchanov, N. A. (1999). Prediction of eukaryotic
mRNA translational properties. Bioinformatics,
15(7-8):704–712.

[Kono and Sarai, 1999] Kono, H. and Sarai, A.
(1999). Structure-based prediction of DNA target
sites by regulatory proteins. Proteins, 35(1):114–
121.

[Krogh et al., 1994] Krogh, A., Brown, M., Mian,
I. S., Sjolander, K., and Haussler, D. (1994). Hid-
den Markov models in computational biology. Ap-
plications to protein modeling. Journal of Molec-
ular Biology, 235(5):1501–1501.

31

[Lawrence et al., 1993] Lawrence, C. E., Altschul,
S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F.,
and Wootton, J. C. (1993). Detecting subtle se-
quence signals: a Gibbs sampling strategy for
multiple alignment. Science, 262(5131):208–214.

[Lawrence and Reilly, 1990] Lawrence, C. E. and
Reilly, A. A. (1990). An expectation maximiza-
tion (EM) algorithm for the identification and
characterization of common sites in unaligned
biopolymer sequences. Proteins, 7(1):41–51.

[Li et al., 1999] Li, M., Ma, B., and Wang, L.
(1999). Finding Similar Regions in Many Strings.
In Proceedings of the thirty-first annual ACM
symposium on Theory of computing (STOC),
pages 473–482, Atlanta.

[Liang et al., 2000] Liang, C., Li, M., and Ma, B.
(2000). COPIA: A New Software for Finding Con-
sensus Patterns in Protein Sequences. To appear.

[Linial et al., 1997] Linial, M., Linial, N., Tishby,
N., and Yona, G. (1997). Global self-organization
of all known protein sequences reveals inherent bi-
ological signatures. Journal of Molecular Biology,
268(2):539–546.

[Liu et al., 1995] Liu, J. S., Neuwald, A. F., and
Lawrence, C. E. (1995). Bayesian Models for Mul-
tiple Local Sequence Alignment and Gibbs Sam-
pling Strategies. Journal of the American Statis-
tical Association, 90(432):1156–1170.

[Mcclure and Kowalski, 1999] Mcclure, M. A. and
Kowalski, J. (1999). The effects of ordered-series-
of-motifs anchoring and sub-class modeling on the
generation of HMMs representing highly diver-
gent protein sequences. In Pacific Symposium on
Biocomputing (PSB), pages 162–170.

[Mironov et al., 1999] Mironov, A. A., Koonin,
E. V., Roytberg, M. A., and Gelfand, M. S.
(1999). Computer analysis of transcription regu-
latory patterns in completely sequenced bacterial
genomes. Nucleic Acids Research, 27(14):2981–
2989.

[Neuwald et al., 1997] Neuwald, A. F., Liu, J. S.,
Lipman, D. J., and Lawrence, C. E. (1997).
Extracting protein alignment models from the
sequence database. Nucleic Acids Research,
25(9):1665–1667.

[Nevill-Manning et al., 1998] Nevill-Manning,
C. G., Wu, T. D., and Brutlag, D. L. (1998).
Highly specific protein sequence motifs for

genome analysis. Proceedings of the National
Academy of Sciences of the United States of
America, 95(11):5865–5871.

[Nicodème et al., 1999] Nicodème, P., Salvy, B.,
and Flajolet, P. (1999). Motif statistics. In Ne-
setril, J., editor, Algorithms - ESA ’99, 7th An-
nual European Symposium, volume 1643 of Lec-
ture Notes in Computer Science, pages 194–211,
Prague. Springer.

[Parida et al., 2000] Parida, L., Rigoutsos, I.,
Floratos, A., Platt, D., and Gao, Y. (2000). Pat-
tern discovery on character sets and real-valued
data: linear bound on irredundant motifs and an
efficient polynomial time algorithm. In Proceed-
ings of the Eleventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 297–
308.

[Pedersen et al., 1999] Pedersen, A. G., Baldi, P.,
Chauvin, Y., and Brunak, S. (1999). The biol-
ogy of eukaryotic promoter prediction–a review.
Computers and Chemistry, 23(3-4):191–207.

[Peltier et al., 2000] Peltier, J. B., Friso, G.,
Kalume, D. E., Roepstorff, P., Nilsson, F.,
Adamska, I., and van Wijk, K. J. (2000). Pro-
teomics of the chloroplast: systematic identifica-
tion and targeting analysis of lumenal and periph-
eral thylakoid proteins. Plant Cell, 12(3):319–321.

[Pesole et al., 2000] Pesole, G., Liuni, S., and
D’Souza, M. (2000). PatSearch: a pattern
matcher software that finds functional elements
in nucleotide and protein sequences and as-
sesses their statistical significance. Bioinformat-
ics, 16(5):439–440.

[Pevzner and Sze, 2000] Pevzner, P. A. and Sze,
S. H. (2000). Combinatorial approaches to find-
ing subtle signals in DNA sequences. In Proceed-
ings of the 8th International Conference on In-
telligent Systems for Molecular Biology (ISMB),
pages 269–278.

[Rigoutsos and Floratos, 1998a] Rigoutsos, I. and
Floratos, A. (1998a). Combinatorial pattern
discovery in biological sequences: The TEIRE-
SIAS algorithm. Bioinformatics, 14(1):55–67.
Published erratum appears in Bioinformatics,
14(2):229.

[Rigoutsos and Floratos, 1998b] Rigoutsos, I. and
Floratos, A. (1998b). Motif discovery without
alignment or enumeration (extended abstract).

32

In Proceedings of the second annual international
conference on Computational molecular biology
(RECOMB), pages 221 – 227, New York.

[Rigoutsos et al., 1999] Rigoutsos, I., Floratos, A.,
Ouzounis, C., Gao, Y., and Parida, L. (1999).
Dictionary building via unsupervised hierarchical
motif discovery in the sequence space of natural
proteins. Proteins, 37(2):264–267.

[Rigoutsos et al., 2000] Rigoutsos, I., Floratos, A.,
Parida, L., Gao, Y., and Platt, D. (2000). The
emergence of pattern discovery techniques in
computational biology. Metabolic Engineering,
2(3):159–167.

[Roulet et al., 2000] Roulet, E., Bucher, P., Schnei-
der, R., Wingender, E., Dusserre, Y., Werner, T.,
and Mermod, N. (2000). Experimental analysis
and computer prediction of CTF/NFI transcrip-
tion factor DNA binding sites. Journal of Molec-
ular Biology, 297(4):833–838.

[Savoie et al., 1999] Savoie, C. J., Kamikawaji, N.,
Sasazuki, T., and Kuhara, S. (1999). Use of BON-
SAI decision trees for the identification of poten-
tial MHC class I peptide epitope motifs. In Pa-
cific Symposium on Biocomputing (PSB), pages
182–189.

[Schneider and Stephens, 1990] Schneider, T. D.
and Stephens, R. M. (1990). Sequence logos: a
new way to display consensus sequences. Nucleic
Acids Research, 18(20):6097–6100.

[Singh et al., 1998] Singh, M., Berger, B., Kim,
P. S., Berger, J. M., and Cochran, A. G. (1998).
Computational learning reveals coiled coil-like
motifs in histidine kinase linker domains. Pro-
ceedings of the National Academy of Sciences of
the United States of America, 95(6):2738–2743.

[Sinha and Tompa, 2000] Sinha, S. and Tompa, M.
(2000). A statistical method for finding transcrip-
tion factor binding sites. In Proceedings of the 8th
International Conference on Intelligent Systems
for Molecular Biology (ISMB), pages 344–344.

[Smith et al., 1990] Smith, H. O., Annau, T. M.,
and Chandrasegaran, S. (1990). Finding sequence
motifs in groups of functionally related proteins.
Proceedings of the National Academy of Sciences
of the United States of America, 87(2):826–830.

[Tavazoie et al., 1999] Tavazoie, S., Hughes, J. D.,
Campbell, M. J., Cho, R. J., and Church, G. M.

(1999). Systematic determination of genetic net-
work architecture. Nature Genetics, 22(3):281–
285.

[Tompa, 1999] Tompa, M. (1999). An exact method
for finding short motifs in sequences, with ap-
plication to the ribosome binding site problem.
In Proceedings of the 7th International Confer-
ence on Intelligent Systems for Molecular Biology
(ISMB), pages 262–271.

[van Helden et al., 1998] van Helden, J., Andre,
B., and Collado-Vides, J. (1998). Extracting
regulatory sites from the upstream region of
yeast genes by computational analysis of oligonu-
cleotide frequencies. Journal of Molecular Biol-
ogy, 281(5):827–832.

[van Helden et al., 2000] van Helden, J., del Olmo,
M., and Perez-Ortin, J. E. (2000). Statistical
analysis of yeast genomic downstream sequences
reveals putative polyadenylation signals. Nucleic
Acids Research, 28(4):1000–1010.

[Whittle, 1955] Whittle, P. (1955). Some distribu-
tion and moment formulae for the Markov chain.
Journal of the Royal Statistical Society. Series B.,
17:235–242.

[Yada et al., 1997] Yada, T., Totoki, Y., Ishii, T.,
and Nakai, K. (1997). Functional prediction of
B. subtilis genes from their regulatory sequences.
In Proceedings of the 5th International Confer-
ence on Intelligent Systems for Molecular Biology
(ISMB), pages 354–357.

[Zhang, 1998] Zhang, M. Q. (1998). Statistical fea-
tures of human exons and their flanking regions.
Human Molecular Genetics, 7(5):919–922.

33

A Publicly Available Software Tools

This appendix gives a short overview of software tools, which are available for pattern discovery. The list is
by no means complete, we included only tools which were accessible to us as of December 2000. There is no
particular order in the list.

TEIRESIAS

IBM Research, Computational Biology Center
http://www.research.ibm.com/bioinformatics/home.html

Terms of use: 90 day academic trial

Availability:

• Download: http://www.research.ibm.com/bioinformatics/download.phtml.html
Distribution: binary (linux, aix, win32, solaris)

• On-line: http://www.research.ibm.com/bioinformatics/teiresias.html

Limits size of input sequences to 30Kb. Allows finding occurences of found patterns in SWISS-PROT.

TEIRESIAS finds all patterns with given density in unaligned set of sequences, which occur in at least
specified number of sequences. TEIRESIAS does not score these patterns. It is based on exhaustive search
for short patterns and on combining short patterns to longer ones.

Example of found pattern:

G.GA..GG.A

Splash: Structural Pattern Localization Analysis by Sequential Histogram

IBM Research, Computational Biology Center
http://www.research.ibm.com/splash/

Terms of use: 90 day academic trial

Availability:

• Download: http://www.research.ibm.com/splash/Download/agreement.htm
Distribution: binary (aix, win32, solaris)

Splash is a deterministic pattern discovery algorithm, which can find sparse amino or nucleic acid patterns
matching identically or similarly in a set of protein or DNA sequences. Sparse patterns of any length, up to
the size of the input sequence, can be discovered without significant loss in performances.

Example of found pattern:

CTC..TCA..TCTT

34

Pratt

Department of Informatics, University of Bergen
http://www.ii.uib.no/~inge/Pratt.html

Terms of use: free

Availability:

• Download: ftp://ftp.ii.uib.no/pub/bio/Pratt/
Distribution: source (unix C)

• On-line: http://www.ii.uib.no/~inge/Pratt.html

The Pratt program is able to discover patterns conserved in sets of unaligned protein sequences. It allows the
user to define a class of patterns (e.g., the degree of ambiguity allowed and the length and number of gaps),
and the method is then guaranteed to find the conserved patterns in this class scoring highest according to
a significance measure defined. Pratt uses carefully pruned exhaustive search method.

Example of found pattern:

C-T-x(4,5)-T-G-x(4)-G-x(1,2)-A-x(4)-G

MEME: Multiple EM for Motif Elicitation

UCSD Computer Science and Engineering
http://meme.sdsc.edu/

Terms of use: academic free, commercial available

Availability:

• Download: ftp://ftp.sdsc.edu/pub/sdsc/biology/meme/
Distribution: source (ansi C)

• On-line: http://meme.sdsc.edu/meme/website/meme.html

Limits size of input sequences to 100Kb.

MEME is a tool for discovering motifs in a group of related DNA or protein sequences. MEME represents
motifs as position weight matrices. Individual MEME motifs do not contain gaps. Patterns with variable-
length gaps are split by MEME into two or more separate motifs. The algorithm is based on expectation
maximization tehnique. MEME can report patterns as PWM, log-odds matrix or in BLOCKS format.

Example of found pattern:

Multilevel CCGGGAGTCCAGCCCCGGCCTG

consensus AA CGCGA TT AGA G

sequence T T T

35

Meta-MEME

http://metameme.sdsc.edu/

Terms of use: academic free, commercial available

Availability:

• Download: http://metameme.sdsc.edu/mhmm-download.html
Distribution: source (ansi C), binary (solaris, DEC)

• On-line: http://metameme.sdsc.edu/cgi-bin/submit-verify.cgi

Allows running of estimated model against major databases.

Meta-MEME is a software toolkit for building and using motif-based hidden Markov models of biological
sequences. The input to Meta-MEME is a set of similar DNA or protein sequences, as well as a set of motif
models discovered by MEME. Meta-MEME combines these models into a single, motif-based hidden Markov
model and uses this model to produce a multiple alignment of the original set of sequences and to search a
sequence database for homologs.

SAM: Sequence Alignment and Modeling Software System

Baskin Center for Computer Engineering and Science
http://www.cse.ucsc.edu/research/compbio/sam.html

Terms of use: academic free, commercial available

Availability:

• Download: http://www.cse.ucsc.edu/research/compbio/sam2src/
Distribution: binary (DEC, Linux, SGI, solaris)

• On-line: http://www.cse.ucsc.edu/research/compbio/HMM-apps/tuneup-alignment.html

Allows use of SAM for multiple sequence allignment. No access to intermediate results (e.g. model
built, etc.).

• On-line: http://bioweb.pasteur.fr/seqanal/motif/sam-uk.html

Allows fairly complex analysis of set of sequences, starting with building and training HMM model. All
intermediate results are stored on server and can be easily downloaded.

SAM is a set of software tools for building and using linear HMMs. Each node has a match state, insert
state and delete state. Each sequence uses a series of these states to traverse the model from start to end.
In many ways, these models correspond to profiles. For set of DNA or protein sequences, SAM allows to
build HMM model, train it and use it for finding other similar sequences in databases. From HMM model
itself, pattern in more conventional form (PWM) can be extracted.

36

Gibbs Motif Sampler

Biometrics Laboratory of Wadsworth Center
http://bayesweb.wadsworth.org/gibbs/gibbs.html

Availability:

• On-line: http://bayesweb.wadsworth.org/gibbs/gibbs.html

Limits size of the input sequences to 10Kb.

Gibbs Motif Sampler is a program, which can find patterns in set of DNA or protein sequences. The
program is an implementation of Gibbs sampling method. Motifs are represented by position weight matrices,
program also perform local multiple sequence alignment.

Example of found pattern:

Motif probability model

__

Pos. # a t c g

__

1 | 0.138 0.024 0.020 0.818

2 | 0.024 0.024 0.020 0.932

4 | 0.592 0.024 0.361 0.023

5 | 0.024 0.138 0.815 0.023

7 | 0.024 0.024 0.020 0.932

8 | 0.024 0.024 0.020 0.932

9 | 0.138 0.138 0.020 0.705

10 | 0.933 0.024 0.020 0.023

11 | 0.479 0.024 0.020 0.478

12 | 0.819 0.024 0.020 0.137

Gibbs Sampler

National Center for Biotechnology Information
Terms of use: academic free

Availability:

• Download: ftp://ncbi.nlm.nih.gov/pub/neuwald/gibbs9_95/
Distribution: source (ansi C)

• On-line: http://copan.cifn.unam.mx/~jvanheld/rsa-tools/demo.gibbs.html

The Gibbs sampler detects motifs shared by a set of functionally related sequences. The program stochasti-
cally examines candidate alignments in an effort to find the best alignment as measured by the maximum a
posteriori (MAP) log-likelihood ratio. Another implementation of Gibbs sampling method.

37

Consensus

Department of Molecular, Cellular, and Developmental Biology, University of Colorado
Terms of use: non-commercial free, commercial available

Availability:

• Download: ftp://beagle.colorado.edu/pub/consensus/
Distribution: source (gcc)

• On-line: http://bioweb.pasteur.fr/seqanal/interfaces/consensus-simple.html

The CONSENSUS programs are a collection of programs for determining and analyzing DNA and protein
patterns describing functional elements. Patterns are described by position weight matrices.

Example of found pattern:

MATRIX 1

number of sequences = 6

unadjusted information = 11.2299

sample size adjusted information = 8.17697

ln(p-value) = -43.9126 p-value = 8.49177E-20

ln(expected frequency) = -4.96433 expected frequency = 0.00698264

1|2 : 2/303 GGCACAGGGA

2|4 : 3/162 GCACCAGGGA

3|5 : 4/76 GGCACAGGGA

4|3 : 5/244 GGACCAGGGA

5|6 : 6/372 GCCCCAGGGT

6|1 : 7/299 CGCCCAGGGA

A | 0 0 2 2 0 6 0 0 0 5

C | 1 2 4 4 6 0 0 0 0 0

G | 5 4 0 0 0 0 6 6 6 0

T | 0 0 0 0 0 0 0 0 0 1

COPIA: COnsensus Pattern Identification and Analysis

Availability:

• On-line: http://dna.cs.ucsb.edu/copia/copia_submit.html

Software finds consensus patterns in protein sequences.

AlignACE: Aligns Nucleic Acid Conserved Elements

http://arep.med.harvard.edu/mrnadata/

Terms of use: academic free

Availability:

• Download: http://arep.med.harvard.edu/mrnadata/mrnasoft.html
Distribution: binary (linux, win32)

AlignACE is a program which finds sequence elements conserved in a set of DNA sequences. It uses a Gibbs
sampling strategy. An iterative masking procedure is used to allow multiple distinct motifs to be found
within a single data set. The output are motifs (aligned sites) sorted according to MAP score.

38

ASSET: Aligned Segment Statistical Evaluation Tool

Terms of use: free

Availability:

• Download: ftp://ncbi.nlm.nih.gov/pub/neuwald/asset/
Distribution: source (unix C)

The Asset program produces scan file of the locally aligned segment blocks. It is possible to specify the
percentage of sequences in the input file that are required to contain a motif before the corresponding motif
block can be included in the scan file.

SDISCOVER

http://www.cis.njit.edu/~discdb/

Terms of use: academic free

Availability:

• Download: http://www.cis.njit.edu/~discdb/
Distribution: source (unix C)

• On-line: http://www.cis.njit.edu/~discdb/

SDISCOVER takes a set of related proteins and produces a collection of active motifs in the set. Algorithm
first finds candidate segments among a small sample of sequences and then combines the segments to form
candidate motifs and checks, whether these motifs meet specified requirements.

Blocks Maker

Fred Hutchinson Cancer Research Center

http://www.blocks.fhcrc.org/blockmkr/

Terms of use: non-profit free

Availability:

• Download: ftp://ncbi.nlm.nih.gov/repository/blocks/unix/protomat/
Distribution: source (unix C), binary (linux)

• On-line: http://www.blocks.fhcrc.org/blockmkr/

Limits number of sequences to 250 and total length of sequences to 100Kb.

The BLOCK MAKER SERVER finds blocks in a group of related protein sequences. Blocks are short mul-
tiply aligned ungapped segments corresponding to the most highly conserved regions of proteins. Typically,
a group of proteins has more than one region in common and their relationship is represented as a series of
blocks separated by unaligned regions. Block Maker will run PROTOMAT twice, first using Smith’s MOTIF
and second using a modification of Lawrence’s Gibbs sampler as motif-finding algorithms, and then it will
report both sets of blocks.

39

Example of found pattern:

unknownA, width = 42

HBP1_CASGL 8 ALLKQSWEVLKQNIPAHSLRLFALIIEAAPESKYVFSFLKDS

HBP2_CASGL 15 ALVVKSWSAMKPNAGELGLKFFLKIFEIAPSAQKLFSFLKDS

HBPL_PARAD 15 ALVVKAWAVMKKNSAELGLQFFLKIFEIAPSAKNLFSYLKDS

HBPL_TRETO 16 ALVVKSWAVMKKNSAELGLKFFLKIFEIAPSAKNLFSYLKDS

LGB1_LUPLU 9 ALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGS

LGB1_MEDSA 9 ALVNSSWEAFKQNLPRYSVFFYTVVLEKAPAAKGLFSFLKNS

LGB1_MEDTR 9 ALVNSSYEAFKQNLSGYSVFFYTVILEKAPAAKGLFSFLKDS

LGB1_PEA 7 EALVNSSSEFKQNLPGYSILFYTIVLEKAPAAKGLFSFLKDT

eMOTIF

The Brutlag Bioinformatics Group, Stanford University
http://motif.stanford.edu/emotif/

Availability:

• On-line: http://motif.stanford.edu/emotif/emotif-maker.html

eMOTIF finds significant similarities in aligned set of sequences.

Example of found pattern:

[ilv]..[iv]....g[filvy].....f...[fy]......[ast]p...

40

B Databases of Patterns and Motifs

This appendix gives a short overview of databases related to pattern discovery. They can be divided into
two groups:

• Databases of protein domains contain individual functional or structural domains usually charac-
terized by pattern or local allignment.

• Databases of transcription factors contain information concerning transcription factors themselves
and their binding sites in regulatory regions.

B.1 Databases of protein domains

PROSITE

Swiss Institute of Bioinformatics, Expert Protein Analysis System (ExPASy)
http://www.expasy.ch/prosite/

Terms of use: academic free, commercial available
Status (as of Dec. 2000): Release 16.30, of 09-Dec-2000 contains 1076 documentation entries that describe
1455 different patterns, rules and profiles/matrices.

Availability:

• Download: ftp://ftp.expasy.ch/databases/prosite

Last release not avaliable.

• On-line search: http://www.expasy.ch/prosite/

Search by text, author, etc, plus scan sequence against PROSITE and search pattern/profile agains
SWISS-PROT.

PROSITE is a database of protein families and domains. It consists of biologically significant sites, patterns
and profiles that help to reliably identify to which known protein family (if any) a new sequence belongs.
Patterns are deterministic patterns with ambiguous characters and flexible gaps. profiles are extended
position weight matrices with gaps. Entries include description of the family/domain, pattern, list of true
hits, false hits, false misses, etc.

Example of pattern:

Peroxidases proximal heme-ligand signature:

[DET]-[LIVMTA]-x(2)-[LIVM]-[LIVMSTAG]-[SAG]-[LIVMSTAG]-H-[STA]-[LIVMFY].

Src homology 3 (SH3) domain profile (only parts are shown):

/GENERAL_SPEC: ALPHABET=’ABCDEFGHIKLMNPQRSTVWYZ’; LENGTH=62;

/DISJOINT: DEFINITION=PROTECT; N1=6; N2=57;

/NORMALIZATION: MODE=1; FUNCTION=LINEAR; R1=0.9383; R2=0.016376; TEXT=’OrigScore’;

/CUT_OFF: LEVEL=0; SCORE=462; N_SCORE=8.5; MODE=1;

/DEFAULT: D=-20; I=-20; B1=-60; E1=-60; MI=-105; MD=-105; IM=-105; DM=-105;

/I: B1=0; BI=-105; BD=-105;

/M: SY=’P’; M=-4,-8,-26,-7,-1,-19,-11,-11,-15,-3,-16,-9,-6,6,-3,-6,-2,-3,-14,-25,-15,-3;

/M: SY=’E’; M=-5,-3,-25,0,4,-18,-8,-9,-17,-5,-15,-11,-4,-4,-3,-8,-1,-6,-14,-26,-14,0;

/M: M=-5,-8,-25,-8,-4,-17,-4,-14,-14,-5,-13,-8,-7,-6,-7,-6,-4,-7,-11,-24,-15,-6;

41

...(skipped 9 lines)...

/M: SY=’E’; M=-6,5,-23,6,11,-22,-15,-3,-19,2,-18,-10,2,-7,6,-3,0,-4,-16,-28,-14,8;

/I: I=-6; MI=0; IM=0; B1=-50;

/M: SY=’A’; M=16,-9,-20,-12,-5,-22,-2,-16,-17,-4,-18,-12,-6,2,-6,-8,5,-1,-11,-24,-20,-7;

/M: SY=’E’; M=-4,-2,-25,-3,8,-23,-13,-6,-19,5,-19,-10,1,-7,7,6,2,-2,-16,-26,-15,6;

...(skipped 52 lines)...

/M: SY=’S’; M=-1,-4,-21,-5,-4,-18,-9,-6,-14,-7,-14,-10,-1,-7,-4,-5,4,-1,-11,-29,-14,-5;

/I: E1=0; IE=-105; DE=-105;

BLOCKS

Fred Hutchinson Cancer Research Center in Seattle, Washington, USA
http://blocks.fhcrc.org/blocks/

Terms of use: free
Status (as of Dec. 2000): Version 12.0, June 2000, 4071 blocks representing 998 groups documented in
InterPro 1.0

Availability:

• Download: ftp://ncbi.nlm.nih.gov/repository/blocks/unix/

• On-line search: http://blocks.fhcrc.org/blocks/

Search by keyword, ID, scan sequence agains blocks, compare blocks, display sequence logos, links to
other databases.

The blocks for the Blocks Database are made automatically by looking for the most highly conserved
regions in groups of proteins documented in the Prosite Database. Blocks are created by PROTOMAT
system using the MOTIF algorithm as implemented in Block Maker. Patterns are gapless alignemnts of
several segments of proteins, highly similar segments are grouped together eabd each segment is followed by
score how much it differes from other blocks.

Example of pattern:

Block IPB000889B

ID GSHPx; BLOCK

AC IPB000889A; distance from previous block=(11,96)

DE Glutathione peroxidase

BL NAT; width=25; seqs=64; 99.5%=1220; strength=1316

GSHY_ARATH|P52032 (89) GKDVALNKFKGKVMLIVNVASRCGL 27

GSHZ_CITSI|Q06652 (19) GQDVDLSIYKGKLLLIVNVASQCGL 32

GSHZ_HELAN|O23970 (19) GNDVDLSVYKGKVVLIVNVASKCGL 20

GSHY_HELAN|O23968 (32) GQDVELSKYKGKVLLIVNVASQCGF 22

GSHZ_NICSY|P30708 (21) GNDVDLSIYKGKVLIIVNVASQCGL 18

GSHC_CAEEL|O02621 (14) GDDVSLSDYKGKVLIIVNVASQCGL 21

GSHD_CAEEL|O62327 (14) GEDTPLSNYQGKVLIIVNVASQCGL 33

O19985 (89) GKDVALNKFKGKVMLIVNVASRCGL 27

O49069 (21) GNDVDLSIYKGKVLIIVNVASQCGL 18

O65156 (97) GKDVSLSKFKGKVLLIVNVASRCGL 19

O48646 (20) GNDVDLSIYKGKVLLIVNVASQCGL 17

O22850 (58) GKDVSLSKFTGKVLLIVNVASKCGL 28

O24296 (89) KKDVSLSKFKGKVLLIVNVASRCGL 26

O23814 (22) GNDVDLSIYKGKVLLIVNVASQCGL 17

O24031 (21) GKDVDLSIYKGKVLIIVNVASQCGL 18

O81717 (89) GKDVALNKFKGKVMLIVNVASRCGL 27

42

GSHU_CAEEL|Q95003 (51) GEYTDLSQYRGKVILLVNVATFCAY 43

Q93204 (50) GEYTDLSQYRGQVLLMVNVATFCAY 54

...(plus several more clusters)...

PRINTS: Protein Fingerprints database

University of Manchester (UK), Bioinformatics unit
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/

Terms of use: public domain database
Status (as of Dec. 2000): Release 28.0, September 25, 2000 contains 1410 entries, encoding 8550 individual
motifs.

Availability:

• Download: ftp://bioinf.man.ac.uk/pub/prints/

• On-line search: http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/

Search by keyword, ID, text, etc., sequence against fingerprints, provides graphical display of search
results.

PRINTS is a compendium of protein fingerprints. A composite or multiple-motif fingerprint contains a
number of aligned motifs taken from different parts of a multiple alignment. Discrimination power is increased
in these systems because the recognition of individual elements of the fingerprint is mutually conditional.
True family members are then easy to identify by virtue of possessing all elements of the fingerprint, while
subfamily members may be identified by possessing only part of it. Fingerprints are generated automatically
based on multiple sequence alignment. Entries are annotated.

Example of pattern:

SH3DOMAIN2 Length of motif = 16 Motif number = 2

SH3 domain motif II - 9

PCODE ST INT

DDLSFHKGEKFQILNS FYN_HUMAN 98 3

DDLSFHKGEKFQILNS Q62844 99 3

DDLSFHKGEKFQILNS Q16248 99 3

DDLSFHKGEKFQILNS FYN_MOUSE 98 3

DDLSFQKGEKFQILNS FYN_XENLA 98 3

DDLSFKKGERFQIINN YES_CHICK 106 3

TDLSFKKGERLQIVNN SRC1_XENLA 96 3

DDLSFHKGEKFQILNS FYN_CHICK 98 3

DDLSFKGGERFQIINN Q85466 382 3

DDLSFKGGERFQIINN YES_AVISY 98 3

DDLSFRKGERFQILNS FYN_XIPHE 98 3

DDLSFRKGDRFQIINN YES_XIPHE 109 3

...(plus many more alignment lines like these)...

PFAM: Protein families database of alignments and HMMs

Washington University in St. Luis, and Sanger Centre, Cambride, UK, and Center for Genomics Research,
Karolinska Institutet, Sweden
http://pfam.wustl.edu/

Terms of use: GNU Library general public license
Status (as of Dec. 2000): Version 5.5 (Sept 2000) contains alignments and models for 2478 protein
families

43

Availability:

• Download: ftp://ftp.genetics.wustl.edu/pub/eddy/pfam-5.5/

• On-line search: http://pfam.wustl.edu/hmmsearch.shtml

Search by keyword, text, sequence against database, graphical display of domains in proteins.

Pfam is a database of multiple alignments of protein domains or conserved protein regions. Profile hidden
Markov models (profile HMMs) built from the Pfam alignments can be very useful for automatically recog-
nizing that a new protein belongs to an existing protein family, even if the homology is weak. Pfam-A are
fairly accurate human crafted multiple alignments whereas Pfam-B is an automatic clustering of the rest of
SWISS-PROT.

Example of pattern:

SH3 domain (part of the alignment)

ABL1_HUMAN/64-119 NLFVALYDFVASG..DNTLSIT.KGEKLRVLGYNHNGE..WCEAQTKNG.....QGWVPSNYITPV

ABL_DROME/207-263 QLFVALYDFQAGG..ENQLSLK.KGEQVRILSYNKSGE..WCEAHSDSGN....VGWVPSNYVTPL

MYS3_YEAST/1124-1181 PKFEAAYDFPGSG.SSSELPLK.KGDIVFISRDEPSG...WSLAKLLDGS...KEGWVPTAYMTPY

CSK_CHICK/12-68 TECIAKYNFHGTA..EQDLPFS.KGDVLTIVAVTKDPN..WYKAKNKV..G..REGIIPANYVQKR

DRK_DROME/1-56 MEAIAKHDFSATA..DDELSFR.KTQILKILNMEDDSN..WYRAELDGK.....EGLIPSNYIEMK

SEM5_CAEEL/1-56 MEAVAEHDFQAGS..PDELSFK.RGNTLKVLNKDEDPH..WYKAELDGN.....EGFIPSNYIRMT

SPCA_DROME/973-1027 ECVVALYDYTEKS..PREVSMK.KGDVLTLLNSNNK.D..WWKVEVN...D..RQGFVPAAYIKKI

SPCA_HUMAN/980-1034 QRVMALYDFQARS..PREVTMK.KGDVLTLLSSINK.D..WWKVEAA...D..HQGIVPAVYVRRL

BLK_MOUSE/54-109 RFVVALFDYAAVN..DRDLQVL.KGEKLQVLRST.GD...WWLARSLVTG...REGYVPSNFVAPV

HCK_HUMAN/81-136 IIVVALYDYEAIH..HEDLSFQ.KGDQMVVLEES.GE...WWKARSLATR...KEGYIPSNYVARV

LYN_HUMAN/65-120 DIVVALYPYDGIH..PDDLSFK.KGEKMKVLEEH.GE...WWKAKSLLTK...KEGFIPSNYVAKL

LCK_CHICK/62-117 KLVVALYDYEPTH..DGDLGLK.QGEKLRVLEES.GE...WWRAQSLTTG...QEGLIPHNFVAMV

FGR_HUMAN/80-136 TLFIALYDYEART..EDDLTFT.KGEKFHILNNTEGD...WWEARSLSSG...KTGCIPSNYVAPV

STK_HYDAT/62-118 TIFVALYDYEARI..SEDLSFK.KGERLQIINTADGD...WWYARSLITN...SEGYIPSTYVAPE

ProDom: The Protein Domain Database

INRA centre in Toulouse, France

http://www.toulouse.inra.fr/prodom/doc/prodom.html

Status (as of Dec. 2000): ProDom 2000.1 (February 2000) 391 ProDom families.

Availability:

• Download: ftp://ftp.toulouse.inra.fr/pub/prodom/current_release/

• On-line search: http://protein.toulouse.inra.fr/prodom.html

Search by keyword, ID, sequence against against database, graphical display of domains in proteins.

The ProDom protein domain database consists of an automatic compilation of homologous domains.
Current versions of ProDom are built using a novel procedure based on recursive PSI-BLAST searches.
Strong emphasis has been put on the graphical user interface which allows for interactive analysis of protein
homology relationships. Almost no annotation. Links to other databases.

44

Example of pattern:

Example of alignment (part of sequences):

ABL1_CAEEL-120-184FVALY DF.....HGV ...GEEQLSL RKGD..QV.. ..RILGYNKN

ABL1_HUMAN-66-116FVALY DF.....VAS ...GDNTLSI TKGE..KL.. ..RVLGYNHN

ABL_FSVHY-15-65FVALY DF.....VAS ...GDNTLSI TKGE..KL.. ..RVLGYNHN

ABL_MOUSE-66-116FVALY DF.....VAS ...GDNTLSI TKGE..KL.. ..RVLGYNHN

ABL2_HUMAN-112-162FVALY DF.....VAS ...GDNTLSI TKGE..KL.. ..RVLGYNQN

ABL_DROME-209-260FVALY DF.....QAG ...GENQLSL KKGE..QV.. ..RILSYNKS

DRK_DROME-3-53AIAKH DF.....SAT ...ADDELSF RKTQ..IL.. ..KILNMEDD

GRB2_CHICK-3-53AIAKY DF.....KAT ...ADDELSF KRGD..IL.. ..KVLNEECD

GRB2_HUMAN-3-53AIAKY DF.....KAT ...ADDELSF KRGD..IL.. ..KVLNEECD

GRB2_MOUSE-3-53AIAKY DF.....KAT ...ADDELSF KRGD..IL.. ..KVLNEECD

Q63059_RAT-3-53AIAKY DF.....KAT ...ADDELSF KRGD..IL.. ..KVLNEECD

DOMO

Resources Centre INFOBIOGEN, France
http://www.infobiogen.fr/~gracy/domo/home.htm

Status (as of Dec. 2000): Current release (03-Dec-2000) has 8877 entries.

Availability:

• Download: ftp://ftp.infobiogen.fr/pub/db/domo/

• On-line search: http://www.infobiogen.fr/srs6bin/cgi-bin/wgetz?-page+LibInfo+-lib+DOMO+-newId

Search by keyword, ID, sequence

DOMO is a database of homologous protein domain families. It was obtained from fully automated suc-
cessive sequence analysis steps including similarity search, domain delineation, multiple sequence alignment
and motif construction. Major fields of each entry provide information about the related proteins, their func-
tional families, domain decomposition, multiple sequence alignment, conserved residues, and evolutionary
classification tree.

Example of pattern:

PEROXIDASE LIGAND PROXIMAL HEME (not all the sequences are shown in the example)

access dom beg end

al S46504 1 26 [LNFYAKSCP KAEKIIKDAA ILRMHFHDCF VRGCDGSVLL DLVLLS.... ..GAHTIGVS RCCAFVNSX> ---------- 87

al S55035 1 62 [VVRKHLKKV FKEDVGQAAG LLRLHFHDCF VQGCDASVLL DGSASGPSEQ DAPPNLSLRS KAFEIIDDL] ---------- 129

al JQ2252 1 56 [IVRTELKKV FQSDIAQAAG LLRLHFHDCF VQGCDGSVLL DGSASGPSEK DAPPNLTLRA EAFRIIER]- ---------- 122

al JC1249 1 59 [IVRKFVQDA VRKD....KG LLRLHFHDCF VQGCDASVLL HGSAAEPGEQ QAPPNLTLRP SALKAIDN]- ---------- 121

al S34355 1 59 [IVRKFVQDA VRKD....KG LLRLHFHDCF VQGCDASVLL HGSAAEPGEQ QAPPNLTLRP SALKAIDN]- ---------- 121

al S40268 1 40 [IITEEIDRA IRVAPSIGGP LLRLFFHDCF VRGCDASLLL NAT.SSSNPT EKDAPPNQFL RGFALIDR]- ---------- 105

co 1 ivr#==##a =#*-*r==a* llRlhFHDCF V#GCDas=Ll d**.**=**# ##==***=*= rgf*=id#. 69

InterPro: Integrated Resource of Protein Families, Domains and Sites

European Bioinformatics Institute (EBI)
http://www.ebi.ac.uk/interpro/

Terms of use: free
Status (as of Dec. 2000): InterPro release 2.0 (October 2000) contains 3204 entries, representing 767
domains, 2372 families, 50 repeats and 15 post-translational modification sites.

45

Availability:

• Download: ftp://ftp.ebi.ac.uk/pub/databases/interpro/

• On-line search: http://www.ebi.ac.uk/interpro/

Text search and sequence search, returns annotation and links to signature databases

InterPro provides an integrated view of the commonly used signature databases (provides data from databses
SWISS-PROT, TrEMBL, PROSITE, PRINTS, Pfam, and ProDom), and has an intuitive interface for text-
and sequence-based searches.

SBASE

The International Centre for Genetic Engineering and Biotechnology, Trieste Italy
http://www3.icgeb.trieste.it/~sbasesrv/

Terms of use: free
Status (as of Dec. 2000): Release 7.0 (6 October, 1999) contains 237.937 annotated segments of proteins
clustered into over 1811 groups

Availability:

• Download: ftp://ftp.icgeb.trieste.it/pub/SBASE

• On-line search: http://www.icgeb.trieste.it/sbase/

Search by BLAST or browse a list domains

SBASE protein domain library contains annotated structural, functional, ligand-binding and topogenic
segments of proteins, cross-referenced to all major sequence databases and sequence pattern collections. The
entries are clustered into over 1811 groups and are provided with two www-based search facilities for on-line
use. Domains are given as list of occurences in proteins (no alignment found). They are constructed by
BLAST and clustering methods.

HSSP: Database of Homology-derived Secondary Structure of Proteins

http://www.sander.ebi.ac.uk/hssp/

Status (as of Dec. 2000): Current release has 12037 entries

Availability:

• Download: ftp://ftp.ebi.ac.uk/pub/databases/hssp/

• On-line search: http://srs.ebi.ac.uk/srs6bin/cgi-bin/wgetz?-page+LibInfo+-lib+HSSP+-newId

Search through SRS system

HSSP is a derived database merging structural (2-D and 3-D) and sequence information (1-D). For each
protein of known 3D structure from the Protein Data Bank, the database has a file with all sequence
homologues, properly aligned to the PDB protein. Homologues are very likely to have the same 3D structure
as the PDB protein to which they have been aligned. As a result, the database is not only a database of
sequence aligned sequence families, but it is also a database of implied secondary and tertiary structures.

46

B.2 Databases of transcription factors

TRANS-FAC: The Transcription Factor Database

AG Bioinformatik, GBF, Germany
http://transfac.gbf.de/TRANSFAC/

Terms of use: free for non-profit use
Status (as of Dec. 2000): Release 4.0 (12-Dec-1999)

Availability:

• Download: http://transfac.gbf.de/cgi-bin/download/download.pl

• On-line search: http://transfac.gbf.de/TRANSFAC/

Search or browse by keyword, gene name, etc. No sequence input.

TRANSFAC database compiles data about gene regulatory DNA sequences and protein factors binding
to and acting through them. It contains eukaryotic cis-acting regulatory DNA elements and trans-acting
factors. It covers the whole range from yeast to human. The TRANSFAC data have been generally extracted
from the original literature.

EPD: Eukaryotic Promoter Database

Bioinformatics Group, Swiss Institute for Experimental Cancer Research
http://www.epd.isb-sib.ch/

Status (as of Dec. 2000): Release 64

Availability:

• Download: ftp://ftp.epd.unil.ch/pub/databases/epd/

• On-line search: http://www.epd.isb-sib.ch/epd_query_form.html

Search by keyword, sequence etc. Links to TRANSFAC and other databases.

The Eukaryotic Promoter Database is an annotated non-redundant collection of eukaryotic POL II promot-
ers, for which the transcription start site has been determined experimentally. Access to promoter sequences
is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry in-
cludes description of the initiation site mapping data, cross-references to other databases, and bibliographic
references.

Example of pattern:

tcaggtccgcagaaggtctatttaaagggaagcttgctttcttcccttgACTTTTACTCA

COMPEL

Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Siberian Branch
of Russian Academy of Sciences, Russia
http://compel.bionet.nsc.ru/

Terms of use: free for non-commercial users
Status (as of Dec. 2000): COMPEL 3.0, January 1999, contains 178 composite elements

47

Availability:

• Download: http://compel.bionet.nsc.ru/cgi-bin/download/download.pl

• On-line search: http://compel.bionet.nsc.ru/

Search by gene name, factor name, text, etc. Search for possible elements in given sequence. Links to
other databases.

COMPEL collects information about composite regulatory elements (CEs) - pairs of closely situated sites
and transcription factors binding to them. We define a composite element as a minimal functional unit
within that both protein-DNA and protein-protein interactions contribute to a highly specific pattern of
gene transcriptional regulation. Composite regulatory elements contribute to the one of the fundumental
principles of genome functioning - combinatorial nature of gene transcriptional regulation.

Example of pattern:

TGAGTCAggcttcCCCTTCCTGCC

TRRD: Transcription Regulatory Regions Database

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Russia
http://dragon.bionet.nsc.ru/trrd/

Status (as of Dec. 2000): Release 4.1 comprises the description of 514 genes, 717 regulatory units (432
promoters, 139 enhancers, 34 silencers, 74 composite elements), and 2472 transcription factor binding sites.
1700 scientific publications.

Availability:

• On-line search: http://dragon.bionet.nsc.ru/trrd/

Browse only

The Transcription Regulatory Regions Database (TRRD) is a curated database designed for accumulation
of experimental data on extended regulatory regions of eukaryotic genes, the regulatory elements they contain,
i.e., transcription factor binding sites, promoters, enhancers, silencers, etc., and expression patterns of the
genes.

SCPD: The Promoter Database of Saccharomyces cerevisiae

Cold Spring Harbor Laboratory, USA
http://cgsigma.cshl.org/jian/

Availability:

• On-line search: http://cgsigma.cshl.org/jian/

Search by motif, gene name (displays regulatory elements), name of regulatory element, etc.

Example of pattern:

TATAWAW

48

B.3 Other databases

Bio-dictionaries(TM)

IBM Research, Computational Biology Center
http://www.research.ibm.com/bioinformatics/metadata.phtml.html

Status (as of Dec. 2000): Bio-dictionaries of 17 species are provided.

Availability:

• Download: http://www.research.ibm.com/bioinformatics/metadata.phtml.html

Each file contain long list of patterns, as shown in the example. No other data are given.

Bio-Dictionary(TM) is a collection of recurrent amino acid combinations, called seqlets. Seqlets capture
both functional and structural signals that have been reused during evolution both within as well as across
families of related proteins. Provided Bio-DictionariesTM have been compiled by processing individual
complete genomes. They that should greatly facilitate comparative genomics and other studies.

Example of pattern:

A...P.YD.EQY......NPREAD.L.VTG.VT...AE.L..IYEK.PEPK.VVAVGACAL.GG..K......G

49

	Introduction
	Biological Motivation for Pattern Discovery
	Pattern discovery in proteins
	Pattern discovery in non-coding regions
	Tandem Repeats

	Algorithms
	Introduction
	Computer science questions
	Input sequences
	Types of patterns

	Exhaustive search
	Enumerating all patterns.
	Exhaustive search on graphs

	Creating long patterns from short patterns
	TEIRESIAS algorithm
	Work related to TEIRESIAS algorithm

	Iterative heuristic methods
	Gibbs sampling
	Other iterative methods
	From iteration to PTAS

	Machine learning methods
	Expectation maximization
	Hidden Markov models
	Improvements of HMM models

	Methods using additional information
	Finding motifs in aligned sequences
	Global properties of a sequence
	Using phylogenetic tree
	Use of secondary/tertiary structure

	Finding Tandem Repeats

	Statistical Significance
	z-score
	Information content
	Sensitivity, specificity and related measures

	Biological Verification
	Success Stories
	Tuberculosis
	Coiled coils in histidine kinases
	Conclusion

	Conclusion
	Publicly Available Software Tools
	Databases of Patterns and Motifs
	Databases of protein domains
	Databases of transcription factors
	Other databases

