1-DAV-202 Data Management 2023/24
Previously 2-INF-185 Data Source Integration

Materials · Introduction · Rules · Contact
· Grades from marked homeworks are on the server in file /grades/userid.txt
· Dates of project submission and oral exams:
Early: submit project May 24 9:00am, oral exams May 27 1:00pm (limit 5 students).
Otherwise submit project June 11, 9:00am, oral exams June 18 and 21 (estimated 9:00am-1:00pm, schedule will be published before exam).
Sign up for one the exam days in AIS before June 11.
Remedial exams will take place in the last week of the exam period. Beware, there will not be much time to prepare a better project. Projects should be submitted as homeworks to /submit/project.
· Cloud homework is due on May 20 9:00am.


Difference between revisions of "Introduction"

From MAD
Jump to navigation Jump to search
Line 3: Line 3:
  
 
Predpokladáme, že študenti na tomto predmete už vedia programovať v niektorom programovacom jazyku a neboja sa učiť podľa potreby nové jazyky. Takisto predpokladáme základnú znalosť práce v Linuxe vrátane spúšťania príkazov na príkazovom riadku (mali by ste poznať aspoň základné príkazy na prácu so súbormi a adresármi ako cd, mkdir, cp, mv, rm, chmod a pod.). Hoci väčšina technológií preberaných na tomto predmete sa dá použiť na spracovanie dát z mnohých oblastí, budeme ich často ilustrovať na príkladoch z oblasti bioinformatiky. Pokúsime sa vysvetliť potrebné pojmy, ale bolo by dobre, ak by ste sa orientovali v základných pojmoch molekulárnej biológie, ako sú DNA, RNA, proteín, gén, genóm, evolúcia, fylogenetický strom a pod. Študentom zamerania Bioinformatika a strojové učenie odporúčame absolvovať najskôr Metódy v bioinformatike, až potom tento predmet.
 
Predpokladáme, že študenti na tomto predmete už vedia programovať v niektorom programovacom jazyku a neboja sa učiť podľa potreby nové jazyky. Takisto predpokladáme základnú znalosť práce v Linuxe vrátane spúšťania príkazov na príkazovom riadku (mali by ste poznať aspoň základné príkazy na prácu so súbormi a adresármi ako cd, mkdir, cp, mv, rm, chmod a pod.). Hoci väčšina technológií preberaných na tomto predmete sa dá použiť na spracovanie dát z mnohých oblastí, budeme ich často ilustrovať na príkladoch z oblasti bioinformatiky. Pokúsime sa vysvetliť potrebné pojmy, ale bolo by dobre, ak by ste sa orientovali v základných pojmoch molekulárnej biológie, ako sú DNA, RNA, proteín, gén, genóm, evolúcia, fylogenetický strom a pod. Študentom zamerania Bioinformatika a strojové učenie odporúčame absolvovať najskôr Metódy v bioinformatike, až potom tento predmet.
 +
 +
Ak sa chcete doučiť základy používania príkazového riadku, skúste napr. tento tutoriál: http://korflab.ucdavis.edu/bootcamp.html
  
 
==Cieľ predmetu==
 
==Cieľ predmetu==

Revision as of 17:00, 23 February 2016

Cieľová skupina

Tento predmet je určený pre študentov 2. ročníka bakalárskeho študijného programu Bioinformatika a pre študentov bakalárskeho a magisterského študijného programu Informatika, obzvlášť ak plánujú na magisterskom štúdiu absolvovať štátnicové zameranie Bioinformatika a strojové učenie. Radi privítame aj študentov iných zameraní a študijných programov, pokiaľ majú požadované (neformálne) prerekvizity.

Predpokladáme, že študenti na tomto predmete už vedia programovať v niektorom programovacom jazyku a neboja sa učiť podľa potreby nové jazyky. Takisto predpokladáme základnú znalosť práce v Linuxe vrátane spúšťania príkazov na príkazovom riadku (mali by ste poznať aspoň základné príkazy na prácu so súbormi a adresármi ako cd, mkdir, cp, mv, rm, chmod a pod.). Hoci väčšina technológií preberaných na tomto predmete sa dá použiť na spracovanie dát z mnohých oblastí, budeme ich často ilustrovať na príkladoch z oblasti bioinformatiky. Pokúsime sa vysvetliť potrebné pojmy, ale bolo by dobre, ak by ste sa orientovali v základných pojmoch molekulárnej biológie, ako sú DNA, RNA, proteín, gén, genóm, evolúcia, fylogenetický strom a pod. Študentom zamerania Bioinformatika a strojové učenie odporúčame absolvovať najskôr Metódy v bioinformatike, až potom tento predmet.

Ak sa chcete doučiť základy používania príkazového riadku, skúste napr. tento tutoriál: http://korflab.ucdavis.edu/bootcamp.html

Cieľ predmetu

Počas štúdia sa naučíte mnohé zaujímave algoritmy, modely a metódy, ktoré sa dajú použiť na spracovanie dát v bioinformatike alebo iných oblastiach. Ak však počas štúdia alebo aj neskôr v zamestnaní budete chcieť tieto metódy použiť na reálne dáta, zistíte, že väčšinou treba vynaložiť značné úsilie na samotné získanie dát, ich predspracovanie do vhodného tvaru, testovanie a porovnávanie rôznych metód alebo ich nastavení a získavanie finálnych výsledkov v tvare prehľadných tabuliek a grafov. Často je potrebné tieto činnosti veľakrát opakovať pre rôzne vstupy, rôzne nastavenia a podobne. Obzvlášť v bioinformatike je možné si nájsť zamestnanie, kde vašou hlavnou náplňou bude spracovanie dát s použitím už hotových nástrojov, prípadne doplnených menšími vlastnými programami. Na tomto predmete si ukážeme niektoré programovacie jazyky, postupy a technológie vhodné na tieto činnosti. Veľa z nich je použiteľných na dáta z rôznych oblastí, ale budeme sa venovať aj špecificky bioinformatickým nástrojom.

Základné princípy

Silne odporúčame nasledujúci článok s dobrými radami k výpočtovým experimentom

Niektoré dôležité zásady

  • Citát z článku Noble 2009: "Everything you do, you will probably have to do over again."
  • Dobre zdokumentujte všetky kroky experimentu (čo ste robili, prečo ste to robili, čo vám vyšlo)
    • Ani vy sami si o pár mesiacov tieto detaily nebudete pamätať
  • Snažte sa udržiavať logickú štruktúru adresárov a súborov
    • Ak však máte veľa experimentov, môže byť dostačujúce označiť ich dátumom, nevymýšľať stále nové dlhé mená
  • Snažte sa vyhýbať manuálnym úpravám medzivýsledkov, ktoré znemožňujú jednoduché zopakovanie experimentu
  • Snažte sa detegovať chyby v dátach
    • Skripty by mali skončiť s chybovou hláškou, keď niečo nejde ako by malo
    • V skriptoch čo najviac kontrolujte, že vstupné dáta zodpovedajú vašim predstavám (správny formát, rozumný rozsah hodnôt atď.)
    • Ak v skripte voláte iný program, kontrolujte jeho exit code
    • Tiež čo najčastejšie kontrolujte medzivýsledky výpočtu (ručným prezeraním, výpočtom rôznych štatistík a pod.), aby ste odhalili prípadné chyby v dátach alebo vo vašom kóde