1-DAV-202 Data Management 2024/25

Materials · Introduction · Rules · Contact
· Please fill in the following survey


Difference between revisions of "Lr1"

From MAD
Jump to navigation Jump to search
Line 4: Line 4:
  
 
Program for this lecture: basics of R
 
Program for this lecture: basics of R
* very short intro as a lecture
+
* A very short introduction will be given as a lecture.
* exercises have the form of a tutorial: read a bit of text, try some commands, extend/modify them as requested in individual tasks
+
* Exercises have the form of a tutorial: read a bit of text, try some commands, extend/modify them as requested in individual tasks
  
 
In this course we cover several languages popular for scripting and data processing: Perl, Python, R.
 
In this course we cover several languages popular for scripting and data processing: Perl, Python, R.
Line 53: Line 53:
  
 
==Gene expression data==
 
==Gene expression data==
* DNA molecule contains regions called genes, which "recipes" for making proteins
+
* DNA molecules contain regions called genes, which "recipes" for making proteins
 
* Gene expression is the process of creating a protein according to the "recipe"
 
* Gene expression is the process of creating a protein according to the "recipe"
 
* It works in two stages: first a gene is copied (transcribed) from DNA to RNA, then translated from RNA to protein
 
* It works in two stages: first a gene is copied (transcribed) from DNA to RNA, then translated from RNA to protein
Line 68: Line 68:
 
* Downloaded from the [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5926 GEO database]
 
* Downloaded from the [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5926 GEO database]
 
* Data was preprocessed: normalized, converted to logarithmic scale
 
* Data was preprocessed: normalized, converted to logarithmic scale
* Only 1220 genes with biggest changes in expression are included in our dataset
+
* Only 1220 genes with the biggest changes in expression are included in our dataset
 
* Gene expression measurements under 5 conditions:
 
* Gene expression measurements under 5 conditions:
 
** Control: yeast grown in a normal environment
 
** Control: yeast grown in a normal environment
Line 74: Line 74:
 
* From each condition (reference and each acid) we have 3 replicates, together 15 experiments
 
* From each condition (reference and each acid) we have 3 replicates, together 15 experiments
 
* The goal is to observe how the acids influence the yeast and the activity of its genes
 
* The goal is to observe how the acids influence the yeast and the activity of its genes
Part of the file (only first 4 experiments and first 3 genes shown), strings 2mic_D_protein, AAC3, AAD15 are identifiers of genes
+
Part of the file (only first 4 experiments and first 3 genes shown), strings <tt>2mic_D_protein, AAC3, AAD15</tt> are identifiers of genes
 
<pre>
 
<pre>
 
,control1,control2,control3,acetate1,acetate2,acetate3,...
 
,control1,control2,control3,acetate1,acetate2,acetate3,...

Revision as of 13:36, 8 April 2021

HWr1 · Video introduction

Program for this lecture: basics of R

  • A very short introduction will be given as a lecture.
  • Exercises have the form of a tutorial: read a bit of text, try some commands, extend/modify them as requested in individual tasks

In this course we cover several languages popular for scripting and data processing: Perl, Python, R.

  • Their capabilities overlap, many extensions emulate strengths of one in another.
  • Choose a language based on your preference, level of knowledge, existing code for the task, the rest of the team.
  • Quickly learn a new language if needed.
  • Also possibly combine, e.g. preprocess data in Perl or Python, then run statistical analyses in R, automate the entire pipeline with bash or make.

Introduction

  • R is an open-source system for statistical computing and data visualization
  • Programming language, command-line interface
  • Many built-in functions, additional libraries
  • We will concentrate on useful commands rather than language features

Working in R

Option 1: Run command R, type commands in a command-line interface

  • It supports history of commands (arrows, up and down, Ctrl-R) and completing command names with the tab key

Option 2: Write a script to a file, run it from the command-line as follows:
R --vanilla --slave < file.R

Option 3: Use rstudio command to open a graphical IDE

  • Sub-windows with editor of R scripts, console, variables, plots
  • Ctrl-Enter in editor executes the current command in console
  • You can also install RStudio on your home computer and work there

Option 4: If you like Jupyter notebooks, you can use them also to run R code, see for example an explanation of how to enable it in Google Colab [1].

In R, you can easily create plots. In command-line interface these open as a separate window, in Rstudio they open in one of the sub-windows.

x = c(1:10)
plot(x, x * x)

Suggested workflow

  • Work interactively in Rstudio, notebook or on command line, try various options.
  • Select useful commands, store in a script.
  • Run the script automatically on new data/new versions, potentially as a part of a bigger pipeline.

Additional information

Gene expression data

  • DNA molecules contain regions called genes, which "recipes" for making proteins
  • Gene expression is the process of creating a protein according to the "recipe"
  • It works in two stages: first a gene is copied (transcribed) from DNA to RNA, then translated from RNA to protein
  • Different proteins are created in different quantities and their amount depends on the needs of a cell
  • There are several technologies (microarray, RNA-seq) for measuring the amount of RNA for individual genes, this gives us some measure how active each gene is under given circumstances

Gene expression data

  • Rows: genes
  • Columns: experiments (e.g. different conditions or different individuals)
  • Each value is the expression of a gene, i.e. the relative amount of mRNA for this gene in the sample

We will use a data set for yeast:

Part of the file (only first 4 experiments and first 3 genes shown), strings 2mic_D_protein, AAC3, AAD15 are identifiers of genes

,control1,control2,control3,acetate1,acetate2,acetate3,...
2mic_D_protein,1.33613934199651,1.13348900359964,1.2726678684356,1.42903234691804,...
AAC3,0.558482767397578,0.608410781454015,0.6663002997292,0.231622581964063,...
AAD15,-0.927871996497105,-1.04072379902481,-1.01885986692013,-2.62459941525552,...