Basic Information
Name | Probable glycosidase CRH2 (EC 3.2.-.-) (Congo red hypersensitive protein 2) (Unknown transcript 2 protein) |
Uniprot ID | P32623 |
Systematic gene name | YEL040W |
Standard gene name | UTR2 |
Gene names | UTR2 CRH2 YEL040W SYGP-ORF18 |
Description from SGD | YEL040W UTR2 SGDID:S000000766, Chr V from 78053-79456, Genome Release 64-3-1, Verified ORF, "Chitin transglycosylase; functions in the transfer of chitin to beta(1-6) and beta(1-3) glucans in the cell wall; similar to and functionally redundant with Crh1; glycosylphosphatidylinositol (GPI)-anchored protein localized to bud neck" |
Protein length | 467 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MAIVNSWLIC LVSIFSFVVR VEAATFCNAT QACPEDKPCC SQYGECGTGQ
YCLNNCDVRY SFSHDSCMPV PICKSSSTKF KDYSSKLGNA NTFLGNVSEA
DWLYTGDVLD YDDEESLILA MPKNSGGTVL SSTRAVWYGK VSARIKTSHL
AGVVTGFILY SGAGDELDYE FVGADLETAQ TNFYWESVLN YTNSANISTT
DTFENYHTYE LDWHEDYVTW SIDGVVGRTL YKNETYNATT QKYQYPQTPS
KVDISIWPGG NSTNAPGTIA WSGGEINWDA SDISNPGYYY AIVNEVNITC
YDPPSDTKKN GTSAYVYTSS SEFLAKDIAI TDDEVMMDSD EGSGLDPHKG
ATTSSTQKSS SSTATSSSKT SSDHSSSTKK SSKTSSTASS SSSSSSSSSS
SSSTATKNGD KVVSSVSSSV TSQTQTTSSV SGSASSSTSS MSGNNAGANV
AANWRLTVLC VILGYVL
YCLNNCDVRY SFSHDSCMPV PICKSSSTKF KDYSSKLGNA NTFLGNVSEA
DWLYTGDVLD YDDEESLILA MPKNSGGTVL SSTRAVWYGK VSARIKTSHL
AGVVTGFILY SGAGDELDYE FVGADLETAQ TNFYWESVLN YTNSANISTT
DTFENYHTYE LDWHEDYVTW SIDGVVGRTL YKNETYNATT QKYQYPQTPS
KVDISIWPGG NSTNAPGTIA WSGGEINWDA SDISNPGYYY AIVNEVNITC
YDPPSDTKKN GTSAYVYTSS SEFLAKDIAI TDDEVMMDSD EGSGLDPHKG
ATTSSTQKSS SSTATSSSKT SSDHSSSTKK SSKTSSTASS SSSSSSSSSS
SSSTATKNGD KVVSSVSSSV TSQTQTTSSV SGSASSSTSS MSGNNAGANV
AANWRLTVLC VILGYVL
Legend
- X Phoshorylation
- X Glycosylation
- X Ubiquitination
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[77, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[96, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[96, Glyc] | Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications) |
[125, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[132, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[140, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[190, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[196, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[233, Glyc] | Poljak, K., Selevsek, N., Ngwa, E., Grossmann, J., Losfeld, M.E., Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications) |
[233, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[237, Glyc] | Poljak, K., Selevsek, N., Ngwa, E., Grossmann, J., Losfeld, M.E., Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications) |
[237, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[261, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[297, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[310, Glyc] | Poljak, K., Selevsek, N., Ngwa, E., Grossmann, J., Losfeld, M.E., Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications) |
[310, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[310, Glyc] | Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications) |