Basic Information

NameCell wall protein ECM33 (Extracellular mutant protein 33)
Uniprot IDP38248
Systematic gene nameYBR078W
Standard gene nameECM33
Gene namesECM33 YBR078W YBR0727
Description from SGDYBR078W ECM33 SGDID:S000000282, Chr II from 393123-393180,393511-394742, Genome Release 64-3-1, Verified ORF, "GPI-anchored protein involved in efficient glucose uptake; possible role in apical bud growth; GPI-anchoring on the plasma membrane crucial to function; phosphorylated in mitochondria; similar to Sps2p; ECM33 has a paralog, PST1, that arose from the whole genome duplication"
Protein length429
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MQFKNALTAT AILSASALAA NSTTSIPSSC SIGTSATATA QADLDKISGC
STIVGNLTIT GDLGSAALAS IQEIDGSLTI FNSSSLSSFS ADSIKKITGD
LNMQELIILT SASFGSLQEV DSINMVTLPA ISTFSTDLQN ANNIIVSDTT
LESVEGFSTL KKVNVFNINN NRYLNSFQSS LESVSDSLQF SSNGDNTTLA
FDNLVWANNI TLRDVNSISF GSLQTVNASL GFINNTLPSL NLTQLSKVGQ
SLSIVSNDEL SKAAFSNLTT VGGGFIIANN TQLKVIDGFN KVQTVGGAIE
VTGNFSTLDL SSLKSVRGGA NFDSSSSNFS CNALKKLQSN GAIQGDSFVC
KNGATSTSVK LSSTSTESSK SSATSSASSS GDASNAQANV SASASSSSSS
SKKSKGAAPE LVPATSFMGV VAAVGVALL

Legend

  • X Glycosylation
  • X Phoshorylation

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[56, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[82, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[196, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[209, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[251, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[251, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[251, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[253, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[256, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[267, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[267, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[279, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[304, Glyc]Poljak, K.,  Selevsek, N.,  Ngwa, E.,  Grossmann, J.,  Losfeld, M.E.,  Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications)
[304, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[304, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[328, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[328, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[339, Phos]Reinders J, Wagner K, Zahedit RP, et al (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Molecular and Cellular Proteomics 6:1896–1906. (Publication) (All modifications)
[339, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[339, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[339, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[339, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)