Basic Information

NameNADH-cytochrome b5 reductase 1 (EC 1.6.2.2) (Microsomal cytochrome b reductase) (P35)
Uniprot IDP38626
Systematic gene nameYIL043C
Standard gene nameCBR1
Gene namesCBR1 CBR CBR5 YIL043C
Description from SGDYIL043C CBR1 SGDID:S000001305, Chr IX from 274926-274072, Genome Release 64-3-1, reverse complement, Verified ORF, "Cytochrome b reductase and NADH-dependent reductase for Dph3p; required for diphthamide synthesis and tRNA wobble uridine modification; also detected in mitochondria; mutation in conserved NADH binding domain of the human ortholog results in type I methemoglobinemia"
Protein length284
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MAIDAQKLVV VIVIVVVPLL FKFIIGPKTK PVLDPKRNDF QSFPLVEKTI
LTHNTSMYKF GLPHADDVLG LPIGQHIVIK ANINGKDITR SYTPTSLDGD
TKGNFELLVK SYPTGNVSKM IGELKIGDSI QIKGPRGNYH YERNCRSHLG
MIAGGTGIAP MYQIMKAIAM DPHDTTKVSL VFGNVHEEDI LLKKELEALV
AMKPSQFKIV YYLDSPDRED WTGGVGYITK DVIKEHLPAA TMDNVQILIC
GPPAMVASVR RSTVDLGFRR SKPLSKMEDQ VFVF

Legend

  • X Glycosylation
  • X Ubiquitination
  • X Phoshorylation
  • X Multiple modifications

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[54, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[86, Ubi]Back, S., Gorman, A.W., Vogel, C., Silva, G.M. (2019). Site-specific K63 ubiquitinomics provides insights into translation regulation under stress. Journal of Proteome Research 18(1): 309-318. (Publication) (All modifications)
[86, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[91, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[93, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[96, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[101, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[133, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[133, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[162, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[162, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)