Basic Information

NameLysophospholipase 1 (EC 3.1.1.5) (Phospholipase B 1)
Uniprot IDP39105
Systematic gene nameYMR008C
Standard gene namePLB1
Gene namesPLB1 YMR008C YM8270.10C
Description from SGDYMR008C PLB1 SGDID:S000004610, Chr XIII from 282584-280590, Genome Release 64-3-1, reverse complement, Verified ORF, "Phospholipase B (lysophospholipase) involved in lipid metabolism; required for efficient acyl chain remodeling of newly synthesized phosphatidylethanolamine-derived phosphatidylcholine; required for deacylation of phosphatidylcholine and phosphatidylethanolamine but not phosphatidylinositol; PLB1 has a paralog, PLB3, that arose from the whole genome duplication"
Protein length664
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MKLQSLLVSA AVLTSLTENV NAWSPNNSYV PANVTCDDDI NLVREASGLS
DNETEWLKKR DAYTKEALHS FLNRATSNFS DTSLLSTLFG SNSSNMPKIA
VACSGGGYRA MLSGAGMLAA MDNRTDGANE HGLGGLLQGA TYLAGLSGGN
WLTSTLAWNN WTSVQAIVDN TTESNSIWDI SHSILTPDGI NIFKTGSRWD
DISDDVQDKK DAGFNISLAD VWGRALAYNF WPSLHRGGVG YTWSTLREAD
VFKNGEMPFP ITVADGRYPG TTVINLNATL FEFNPFEMGS WDPTLNAFTD
VKYLGTNVTN GKPVNKGQCI AGFDNTGFIT ATSSTLFNQF LLRLNSTDLP
SFIANLATDF LEDLSDNSDD IAIYAPNPFK EANFLQKNAT SSIIESEYLF
LVDGGEDNQN IPLVPLLQKE RELDVIFALD NSADTDDYWP DGASLVNTYQ
RQFGSQGLNL SFPYVPDVNT FVNLGLNKKP TFFGCDARNL TDLEYIPPLI
VYIPNSRHSF NGNQSTFKMS YSDSERLGMI KNGFEAATMG NFTDDSDFLG
CVGCAIIRRK QQNLNATLPS ECSQCFTNYC WNGTIDSRSV SGVGNDDYSS
SASLSASAAA ASASASASAS ASASASGSST HKKNAGNALV NYSNLNTNTF
IGVLSVISAV FGLI

Legend

  • X Glycosylation
  • X Phoshorylation

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[52, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[92, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[123, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[215, Glyc]Poljak, K.,  Selevsek, N.,  Ngwa, E.,  Grossmann, J.,  Losfeld, M.E.,  Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications)
[215, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[215, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[277, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[307, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[307, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[388, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[388, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[459, Glyc]Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L. (2016). High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal Biochem 510: 106-113. (Publication) (All modifications)
[489, Glyc]Poljak, K.,  Selevsek, N.,  Ngwa, E.,  Grossmann, J.,  Losfeld, M.E.,  Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications)
[489, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[491, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[491, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[506, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[506, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[513, Glyc]Zielinska, D.F.,  Gnad, F.,  Schropp, K.,  Wiśniewski, J.R.,  Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications)
[630, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)