Basic Information

NameNADPH-dependent 1-acyldihydroxyacetone phosphate reductase (ADR) (EC 1.1.1.101) (1-acyl DHAP reductase) (Acyl/alkyl DHAP reductase) (Acylglycerone-phosphate reductase) (Triacylglycerol lipase AYR1) (TAG lipase) (EC 3.1.1.3)
Uniprot IDP40471
Systematic gene nameYIL124W
Standard gene nameAYR1
Gene namesAYR1 GBG1 YIL124W
Description from SGDYIL124W AYR1 SGDID:S000001386, Chr IX from 126204-127097, Genome Release 64-3-1, Verified ORF, "Bifunctional triacylglycerol lipase and 1-acyl DHAP reductase; NADPH-dependent 1-acyl dihydroxyacetone phosphate reductase involved in phosphatidic acid biosynthesis; lipid droplet triacylglycerol lipase involved in mobilization of non-polar lipids; found in lipid particles, endoplasmic reticulum and mitochondrial outer membrane; forms NADPH-regulated channel in mitochondrial outer membrane; required for spore germination; role in cell wall biosynthesis; capable of metabolizing steroid hormones"
Protein length297
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MSELQSQPKK IAVVTGASGG IGYEVTKELA RNGYLVYACA RRLEPMAQLA
IQFGNDSIKP YKLDISKPEE IVTFSGFLRA NLPDGKLDLL YNNAGQSCTF
PALDATDAAV EQCFKVNVFG HINMCRELSE FLIKAKGTIV FTGSLAGVVS
FPFGSIYSAS KAAIHQYARG LHLEMKPFNV RVINAITGGV ATDIADKRPL
PETSIYNFPE GREAFNSRKT MAKDNKPMPA DAYAKQLVKD ILSTSDPVDV
YRGTFANIMR FVMIFVPYWL LEKGLSKKFK LDKVNNALKS KQKNKDD

Legend

  • X Phoshorylation
  • X Ubiquitination

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[2, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[6, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[226, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[239, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[243, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[243, Phos]Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications)
[243, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)