Basic Information
Name | Endoplasmic oxidoreductin-1 (EC 1.8.4.-) (Endoplasmic reticulum oxidoreductase protein 1) |
Uniprot ID | Q03103 |
Systematic gene name | YML130C |
Standard gene name | ERO1 |
Gene names | ERO1 YML130C YM4987.05C |
Description from SGD | YML130C ERO1 SGDID:S000004599, Chr XIII from 13174-11483, Genome Release 64-3-1, reverse complement, Verified ORF, "Thiol oxidase required for oxidative protein folding in the ER; essential for maintaining ER redox balance; feedback regulated via reduction and oxidation of regulatory bonds; reduced Pdi1p activates Ero1p by direct reduction of Ero1p regulatory bonds; depletion of thiol substrates and accumulation of oxidized Pdi1p results in inactivation of Ero1p by both Pdi1p-mediated oxidation and autonomous oxidation of Ero1p regulatory bonds; ero1-1 mutation complemented by human ERO1L" |
Protein length | 563 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MRLRTAIATL CLTAFTSATS NNSYIATDQT QNAFNDTHFC KVDRNDHVSP
SCNVTFNELN AINENIRDDL SALLKSDFFK YFRLDLYKQC SFWDANDGLC
LNRACSVDVV EDWDTLPEYW QPEILGSFNN DTMKEADDSD DECKFLDQLC
QTSKKPVDIE DTINYCDVND FNGKNAVLID LTANPERFTG YGGKQAGQIW
STIYQDNCFT IGETGESLAK DAFYRLVSGF HASIGTHLSK EYLNTKTGKW
EPNLDLFMAR IGNFPDRVTN MYFNYAVVAK ALWKIQPYLP EFSFCDLVNK
EIKNKMDNVI SQLDTKIFNE DLVFANDLSL TLKDEFRSRF KNVTKIMDCV
QCDRCRLWGK IQTTGYATAL KILFEINDAD EFTKQHIVGK LTKYELIALL
QTFGRLSESI ESVNMFEKMY GKRLNGSENR LSSFFQNNFF NILKEAGKSI
RYTIENINST KEGKKKTNNS QSHVFDDLKM PKAEIVPRPS NGTVNKWKKA
WNTEVNNVLE AFRFIYRSYL DLPRNIWELS LMKVYKFWNK FIGVADYVSE
ETREPISYKL DIQ
SCNVTFNELN AINENIRDDL SALLKSDFFK YFRLDLYKQC SFWDANDGLC
LNRACSVDVV EDWDTLPEYW QPEILGSFNN DTMKEADDSD DECKFLDQLC
QTSKKPVDIE DTINYCDVND FNGKNAVLID LTANPERFTG YGGKQAGQIW
STIYQDNCFT IGETGESLAK DAFYRLVSGF HASIGTHLSK EYLNTKTGKW
EPNLDLFMAR IGNFPDRVTN MYFNYAVVAK ALWKIQPYLP EFSFCDLVNK
EIKNKMDNVI SQLDTKIFNE DLVFANDLSL TLKDEFRSRF KNVTKIMDCV
QCDRCRLWGK IQTTGYATAL KILFEINDAD EFTKQHIVGK LTKYELIALL
QTFGRLSESI ESVNMFEKMY GKRLNGSENR LSSFFQNNFF NILKEAGKSI
RYTIENINST KEGKKKTNNS QSHVFDDLKM PKAEIVPRPS NGTVNKWKKA
WNTEVNNVLE AFRFIYRSYL DLPRNIWELS LMKVYKFWNK FIGVADYVSE
ETREPISYKL DIQ
Legend
- X Glycosylation
- X Phoshorylation
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[53, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[130, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[368, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[458, Glyc] | Poljak, K., Selevsek, N., Ngwa, E., Grossmann, J., Losfeld, M.E., Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications) |
[458, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[468, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[491, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |