Basic Information
Name | Bud site selection protein RAX2 (Revert to axial protein 2) |
Uniprot ID | Q12465 |
Systematic gene name | YLR084C |
Standard gene name | RAX2 |
Gene names | RAX2 YLR084C L2389 L9449.12 |
Description from SGD | YLR084C RAX2 SGDID:S000004074, Chr XII from 300251-296589, Genome Release 64-3-1, reverse complement, Verified ORF, "Protein required for the maintenance of bud site selection; localizes; localization to the bud neck and previous sites of cell division (bud scars; cytokinesis remnants (CRMs)) is interdependent with Rax2p; required with Rax1p to anchor both Nba1p and Nis1p to CRMs where a Cdc42p inhibitory zone is established preventing repolarization of cells at previous division sites; RAX2 mRNA stability is regulated by Mpt5p; predicted type I membrane-spanning protein; N-glycosylated" |
Protein length | 1220 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MFVHRLWTLA FPFLVEISKA SQLENIKSLL DIEDNVLPNL NISQNNSNAV
QILGGVDALS FYEYTGQQNF TKEIGPETSS HGLVYYSNNT YIQLEDASDD
TRIDKITPFG VDSFILSGSG TINNISVGNQ ILYNLSTLSM TPIFNQSLGA
VQAVLADNSS IYFGGNFSYN NGSMTGYSAL IWDSISNTTQ LLPFGGFGEN
SSVNSIVKLN NDNILFAGQF YTLDDPSALI SSSNNGTNST SSLNATTLEL
GQRIPLRYAS WDSQGSTTFA SDSLVCPNTN EDAWLYPDTS GSLVCNLPYE
VSPTKIRLYN SQRSDSEISV FQILTDPSSS IMNLTYLDPL SGELKNCGEF
CPLYSRATLL SASQNVSSSM DMITFIDNNK TDVKWTSDFQ DFAFVNELPV
SSLKFVALNS YGGSVGLSGL ELYQDTFSTY ANDSLNEYGC SALTNDSSSS
TLSSNDWYNG LTGESYIAAK YVPDQNEPIP RVKFYPNIIH PGHYTINMYT
PGCLQDNTCS ARGIVNVTMW NQQNNTIMKT YLIYQNNDNL KYDQIYSGYL
DFSPEIVLEY VSGIYTTNTA TVVVADQVNV ITVSLDAFNT LSDSSNAKKE
TLLNGILQYQ KSNFTSTRLN ETKVGNTTLN LFPVKNYPKN SSLYADIYDN
KLVIGGVSNR ISIVDLNDDF EVTSSKNQTI QGDVHGITKT NQGLLIFGDI
LSSNNQSAVF LFNGSFENVF NQSRTVNSAL NISLANNDFI VLDNDYVVNA
SSNALIRNSS SFSLSLWAAG NNGDGDVLFS GAVSHMQYGN LNGSVRFLNE
NEIEPLNLEG GIVPYLGAYL NESATAYAYE VDSLNKIYFS NEVYPSWNWS
SGITQMLYAD NQTLLAVSAG SSTTAELSIF DLRNLTMIAN ETLGSNARIN
ALVNFEKNCS MLVGGDFQMT EPNCTGLCLY NYESKTWSTF LNNTIFGEIT
QLSFTNSSEL IISGLFETKE YQSIRLGSFN LTNSTMIPLL SGSEGKLNSF
TVTEDSIVAW NDTSLFIYRN QEWNITSLPG NASSISSVSA IYTDIESNTL
NKRGINNVNN GSILLLNGNF NISQYGYLQS LLFDFQKWTP YFISETTNTS
NYNPIIFINR DVSTEFNSQS PLANVNITVT SPQSTSSQPP SSSASSESKS
KSKKKKIGRG FVVLIGLALA LGTVSVLGIA GVILAYVFKD PEGDYKPIKP
RIDENEMLDT VPPEKLMKFV
QILGGVDALS FYEYTGQQNF TKEIGPETSS HGLVYYSNNT YIQLEDASDD
TRIDKITPFG VDSFILSGSG TINNISVGNQ ILYNLSTLSM TPIFNQSLGA
VQAVLADNSS IYFGGNFSYN NGSMTGYSAL IWDSISNTTQ LLPFGGFGEN
SSVNSIVKLN NDNILFAGQF YTLDDPSALI SSSNNGTNST SSLNATTLEL
GQRIPLRYAS WDSQGSTTFA SDSLVCPNTN EDAWLYPDTS GSLVCNLPYE
VSPTKIRLYN SQRSDSEISV FQILTDPSSS IMNLTYLDPL SGELKNCGEF
CPLYSRATLL SASQNVSSSM DMITFIDNNK TDVKWTSDFQ DFAFVNELPV
SSLKFVALNS YGGSVGLSGL ELYQDTFSTY ANDSLNEYGC SALTNDSSSS
TLSSNDWYNG LTGESYIAAK YVPDQNEPIP RVKFYPNIIH PGHYTINMYT
PGCLQDNTCS ARGIVNVTMW NQQNNTIMKT YLIYQNNDNL KYDQIYSGYL
DFSPEIVLEY VSGIYTTNTA TVVVADQVNV ITVSLDAFNT LSDSSNAKKE
TLLNGILQYQ KSNFTSTRLN ETKVGNTTLN LFPVKNYPKN SSLYADIYDN
KLVIGGVSNR ISIVDLNDDF EVTSSKNQTI QGDVHGITKT NQGLLIFGDI
LSSNNQSAVF LFNGSFENVF NQSRTVNSAL NISLANNDFI VLDNDYVVNA
SSNALIRNSS SFSLSLWAAG NNGDGDVLFS GAVSHMQYGN LNGSVRFLNE
NEIEPLNLEG GIVPYLGAYL NESATAYAYE VDSLNKIYFS NEVYPSWNWS
SGITQMLYAD NQTLLAVSAG SSTTAELSIF DLRNLTMIAN ETLGSNARIN
ALVNFEKNCS MLVGGDFQMT EPNCTGLCLY NYESKTWSTF LNNTIFGEIT
QLSFTNSSEL IISGLFETKE YQSIRLGSFN LTNSTMIPLL SGSEGKLNSF
TVTEDSIVAW NDTSLFIYRN QEWNITSLPG NASSISSVSA IYTDIESNTL
NKRGINNVNN GSILLLNGNF NISQYGYLQS LLFDFQKWTP YFISETTNTS
NYNPIIFINR DVSTEFNSQS PLANVNITVT SPQSTSSQPP SSSASSESKS
KSKKKKIGRG FVVLIGLALA LGTVSVLGIA GVILAYVFKD PEGDYKPIKP
RIDENEMLDT VPPEKLMKFV
Legend
- X Glycosylation
- X Phoshorylation
- X Multiple modifications
- X Ubiquitination
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[69, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[88, Glyc] | Poljak, K., Selevsek, N., Ngwa, E., Grossmann, J., Losfeld, M.E., Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications) |
[187, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[333, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[432, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[613, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[626, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[640, Glyc] | Poljak, K., Selevsek, N., Ngwa, E., Grossmann, J., Losfeld, M.E., Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications) |
[640, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[658, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[658, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[677, Glyc] | Poljak, K., Selevsek, N., Ngwa, E., Grossmann, J., Losfeld, M.E., Aebi, M. (2018). Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae. Mol Cell Proteomics 17: 18-30. (Publication) (All modifications) |
[677, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[823, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[823, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[890, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[956, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[980, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[983, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[1024, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[1031, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[1098, Glyc] | Zielinska, D.F., Gnad, F., Schropp, K., Wiśniewski, J.R., Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46: 542-548. (Publication) (All modifications) |
[1215, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |