Programovanie (1) v C/C++
1-INF-127, ZS 2024/25

Úvod · Pravidlá · Prednášky · Softvér · Testovač
· Kontaktujte nás pomocou e-mailovej adresy E-prg.png (bude odpovedať ten z nás, kto má príslušnú otázku na starosti alebo kto má práve čas).
· Prosíme študentov, aby si pravidelne čítali e-maily na @uniba.sk adrese alebo aby si tieto emaily preposielali na adresu, ktorú pravidelne čítajú.


Letný semester, prednáška č. 9: Rozdiel medzi revíziami

Z Programovanie
Skočit na navigaci Skočit na vyhledávání
(Vytvorená stránka „== Oznamy == * Dnes po prednáške bude zverejnené zadanie štvrtej domácej úlohy, ktorú bude potrebné odovzdať ''do pondelka 26. apríla, 9:00'' (čiže do zači…“)
 
Riadok 113: Riadok 113:
 
</syntaxhighlight>
 
</syntaxhighlight>
  
Použitie triedy:
+
Použitie triedy:  
 
<syntaxhighlight lang="java">
 
<syntaxhighlight lang="java">
LongestPath longestPath = new LongestPath(g, from, to);
+
public static void main(String[] args) {
List<Integer> longest = longestPath.getLongestPath();
+
    Scanner scanner = new Scanner(System.in);
if (longest != null) {
+
    System.out.println("Zadaj graf:");
    System.out.println("Najdlhsia cesta: " + longest);
+
    Graph g = readGraph(scanner, GraphType.DIRECTED_SUCCESSOR_LISTS);
 +
    System.out.println("Zadaj pociatocny a koncovy vrchol:");
 +
    int from = scanner.nextInt();
 +
    int to = scanner.nextInt();
 +
 
 +
    LongestPath longestPath = new LongestPath(g, from, to);  
 +
    List<Integer> longest = longestPath.getLongestPath();
 +
    if (longest != null) {
 +
        System.out.println("Najdlhsia cesta: " + longest);
 +
    } else {
 +
        System.out.println("Ziadna cesta neexistuje.");
 +
    }
 
}
 
}
</syntaxhighlight>
+
</syntaxhighlight> [[Image:Graf5.png|thumb|130px|right]]
  
Príklad výstupu na rovnakom grafe ako vyššie pre počiatočný vrchol ''0'' a koncový vrchol ''3'':
+
Príklad výstupu pre graf na obrázku vpravo, počiatočný vrchol ''0'' a koncový vrchol ''3'':
 
<pre>
 
<pre>
 
Najdlhsia cesta: [0, 1, 2, 4, 3]
 
Najdlhsia cesta: [0, 1, 2, 4, 3]

Verzia zo dňa a času 11:54, 4. apríl 2021

Oznamy

  • Dnes po prednáške bude zverejnené zadanie štvrtej domácej úlohy, ktorú bude potrebné odovzdať do pondelka 26. apríla, 9:00 (čiže do začiatku jedenástej prednášky).
  • Počas stredajších cvičení bude prebiehať štvrtý test zameraný predovšetkým na grafy a grafové algoritmy.
  • V rámci stredajších cvičení tiež bude zverejnené zadanie tretej bonusovej úlohy s termínom odovzdania do stredy 21. apríla, 11:30.

Prehľadávanie s návratom na grafoch: pokračovanie

Hľadanie najdlhšej cesty

Uvažujme problém nájdenia niektorej z najdlhších ciest z vrcholu u do vrcholu v daného orientovaného grafu (ak existuje aspoň jedna). Je dokázané, že za predpokladu platnosti určitých hypotéz z teoretickej informatiky pre túto úlohu neexistuje žiaden efektívny algoritmus. Použijeme teda prehľadávanie s návratom. To bude realizovať trieda LongestPath, ktorú získame drobnou úpravou triedy FixedLengthPaths z minulej prednášky.

  • Počas prehľadávania si budeme pamätať najdlhšiu doposiaľ nájdenú cestu.
  • Vždy, keď prídeme do cieľového vrcholu, porovnáme dĺžku práve nájdenej cesty s najdlhšou doposiaľ nájdenou cestou.
package graphs;

import java.util.*;

/**
 * Trieda realizujuca najdenie najdlhsej cesty medzi danou dvojicou vrcholov grafu.
 */
public class LongestPath {
    /**
     * Graf, v ktorom sa hladanie ciest realizuje.
     */
    private Graph g;

    /**
     * Pociatocny vrchol hladanych ciest.
     */
    private int from;

    /**
     * Koncovy vrchol hladanych ciest.
     */
    private int to;

    /**
     * Pomocny zoznam, v ktorom sa budu pomocou prehladavania s navratom postupne generovat jednotlive cesty.
     */
    private LinkedList<Integer> path;

    /**
     * Pomocny zoznam, v ktorom si budeme pocas generovania ciest pre kazdy vrchol pamatat, ci sa nachadza alebo
     * nenachadza v doposial vygenerovanej casti cesty.
     */
    private ArrayList<Boolean> visited;

    /**
     * Zoznam, v ktorom bude ulozena najdlhsia cesta medzi danou dvojicou vrcholov (pocas prehladavania pojde
     * o najdlhsiu doposial najdenu cestu).
     */
    private List<Integer> longestPath;

    /**
     * Konstruktor, ktory rovno aj spusti prehladavanie s navratom a do zoznamu longestPath ulozi niektoru spomedzi
     * najdlhsich ciest medzi danou dvojicou vrcholov grafu.
     * @param g      Graf, v ktorom sa hladanie ciest realizuje.
     * @param from   Pociatocny vrchol hladanych ciest.
     * @param to     Koncovy vrchol hladanych ciest.
     */
    public LongestPath(Graph g, int from, int to) {
        this.g = g;
        this.from = from;
        this.to = to;

        visited = new ArrayList<>();
        for (int i = 0; i <= g.getNumberOfVertices() - 1; i++) {
            visited.add(false);
        }
        path = new LinkedList<>();
        path.add(from);
        visited.set(from, true);
        search();
    }

    /**
     * Metoda realizujuca samotne rekurzivne prehladavanie s navratom. V pripade, ze sa vygenerovala cesta konciaca
     * vo vrchole to, porovna sa jej dlzka s dlzkou doposial najdlhsej najdenej cesty a ak je dlhsia, ulozi sa ako nova
     * doposial najdlhsia cesta. V opacnom pripade sa vyskusaju vsetky moznosti predlzenia cesty.
     */
    private void search() {
        if (path.getLast() == to) {
            if (longestPath == null || path.size() > longestPath.size()) {
                longestPath = new LinkedList<>(path);
            }
        } else {
            for (int successor : g.outgoingEdgesDestinations(path.getLast())) {
                if (!visited.get(successor)) {
                    visited.set(successor, true);
                    path.add(successor);
                    search();
                    path.removeLast();
                    visited.set(successor, false);
                }
            }
        }
    }

    /**
     * Metoda, ktora vrati najdenu najdlhsiu cestu medzi danou dvojicou vrcholov.
     * @return Nemodifikovatelny pohlad na zoznam vrcholov na najdlhsej ceste z vrcholu from do vrcholu to.
     */
    public List<Integer> getLongestPath() {
        if (longestPath != null) {
            return Collections.unmodifiableList(longestPath);
        } else {
            return null;
        }
    }
}

Použitie triedy:

public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.println("Zadaj graf:");
    Graph g = readGraph(scanner, GraphType.DIRECTED_SUCCESSOR_LISTS);
    System.out.println("Zadaj pociatocny a koncovy vrchol:");
    int from = scanner.nextInt();
    int to = scanner.nextInt();

    LongestPath longestPath = new LongestPath(g, from, to); 
    List<Integer> longest = longestPath.getLongestPath();
    if (longest != null) {
        System.out.println("Najdlhsia cesta: " + longest);
    } else {
        System.out.println("Ziadna cesta neexistuje.");
    }
}
Graf5.png

Príklad výstupu pre graf na obrázku vpravo, počiatočný vrchol 0 a koncový vrchol 3:

Najdlhsia cesta: [0, 1, 2, 4, 3]

Hľadanie najväčšej kliky v grafe

Orientované acyklické grafy a topologické triedenie

Úlohy na ohodnotených grafoch

Triedy na reprezentáciu ohodnotených grafov

Hľadanie najdlhšej cesty v ohodnotených grafoch

Najkratšia cesta v ohodnotených grafoch

Zhrnutie prebratých grafových algoritmov