Programovanie (1) v C/C++
1-INF-127, ZS 2024/25

Úvod · Pravidlá · Prednášky · Softvér · Testovač
· Kontaktujte nás pomocou e-mailovej adresy E-prg.png (bude odpovedať ten z nás, kto má príslušnú otázku na starosti alebo kto má práve čas).
· Prosíme študentov, aby si pravidelne čítali e-maily na @uniba.sk adrese alebo aby si tieto emaily preposielali na adresu, ktorú pravidelne čítajú.


Prednáška 6: Rozdiel medzi revíziami

Z Programovanie
Skočit na navigaci Skočit na vyhledávání
 
Riadok 9: Riadok 9:
  
 
Čo nás čaká v najbližšom čase
 
Čo nás čaká v najbližšom čase
* DÚ1 je zverejnená, riešte do utorka 24.10. 22:00. Každá DÚ má váhu 5% známky, t.j. ako cca 2 týždne cvičení.  
+
* DÚ1 je zverejnená, riešte do utorka 29.10. 22:00. Každá DÚ má váhu 5% známky, teda približne ako 2 týždne cvičení.  
 
** Môže sa vám zísť [https://youtu.be/Uml5x1K8CJU video] s príkladom použitia knižnice [[SVGdraw]] na [[Predn%C3%A1%C5%A1ka_5#Kresl.C3.ADme_kruhy|kreslenie kruhov]].
 
** Môže sa vám zísť [https://youtu.be/Uml5x1K8CJU video] s príkladom použitia knižnice [[SVGdraw]] na [[Predn%C3%A1%C5%A1ka_5#Kresl.C3.ADme_kruhy|kreslenie kruhov]].
 
* Dnes algoritmy s poliami.
 
* Dnes algoritmy s poliami.

Aktuálna revízia z 17:48, 13. október 2024

Oznamy

Prebrali sme premenné, polia, podmienky, cykly a funkcie.

  • Z týchto stavebných prvkov sa dajú vystavať pomerne komplikované programy.
  • Menej skúsení programátori si potrebujú prácu s týmito pojmami čo najviac precvičiť. Skúste vyriešiť všetky príklady z cvičení, pracujte na domácej úlohe.
    • Neodpisujte, nič sa tým nenaučíte.
    • Kontaktujte nás, ak potrebujete pomôcť.
    • Účasť na piatkových cvičeniach nie je "za trest", ale spôsob, ako vám môžeme pomôcť zvládnuť predmet.

Čo nás čaká v najbližšom čase

  • DÚ1 je zverejnená, riešte do utorka 29.10. 22:00. Každá DÚ má váhu 5% známky, teda približne ako 2 týždne cvičení.
  • Dnes algoritmy s poliami.
  • Rozcvička zajtra sa tiež bude týkať polí.
  • Účasť v piatok povinná pre tých, ktorí v utorok nezískajú aspoň 4 body.

Parametre funkcií: prehľad, opakovanie

Jednoduché typy, napr. int, double, bool

  • Bez & sa skopíruje hodnota
  • S & premenná dostane vo funkcii nové meno
void f1(int x) {
    x++; // zmena x sa neprenesie do main (y zostane rovnaká)
    cout << x << endl;
}

void f2(int &x) {
    x++; // zmena x sa prenesie ako zmena y v main
    cout << x << endl;
}

int main() {
    int y = 0;
    f1(y);
    f2(y);
    f1(y + 1);
    //zle: f2(y+1);
}

Polia odovzdávame bez &

  • väčšinou potrebujeme poslať aj veľkosť poľa, ak nie je globálne známa
  • zmeny v poli zostanú aj po skončení funkcie
void f(int a[], int n) {
    for (int i = 0; i < n; i++) {
        cout << a[i] << endl;
    }
}

int main() {
    int b[3] = {1, 2, 3};
    f(b, 3);
}

SVGdraw obrázky sú v skutočnosti objekty, väčšinou ich chcete posielať s &

  • všetky zmeny na nich spravené pretrvávajú aj po skončení funkcie
#include "SVGdraw.h"
void kresli(SVGdraw &drawing, int n, int y, 
            int rozostup, int velkost) {
   for(int i=0; i<n; i++) {
       drawing.drawRectangle(i*rozostup+velkost, y, 
                             velkost, velkost);
   }
}
int main() {
    SVGdraw drawing(320, 100, "stvorce.svg");
    kresli(drawing, 10, 50, 30, 10);
    drawing.finish();
}

Štruktúry (struct) väčšinou tiež posielame pomocou &


Návratové hodnoty:

  • ak je výsledkom funkcie jedno číslo alebo pravdivostná hodnota, vrátime ju príkazom return
  • ak je výsledkom viac hodnôt, alebo niečo zložitejšie (pole, struct,...), odovzdáme ho ako parameter pomocou &, návratová hodnota môže zostať void (pri poli & nedávame)

Tieto pravidlá súvisia so smerníkmi a správou pamäti, povieme si viac o pár týždňov


Funkcie a polia: načítanie a vypísanie poľa

Dve základné funkcie, ktoré sa nám môžu zísť v programoch

  • precvičíme si tiež ako sa pracuje s poliami vo funkciách
#include <cassert>
#include <iostream>
using namespace std;

void readArray(int a[], int &n, int maxN) {
    /* Od užívateľa načíta počet vstupných čísel,
     * tento počet uloží do premennej n. 
     * Potom načíta n celých čísel a uloží ich do poľa a,
     * Hodnota maxN je veľkosť poľa,
     * ktorú nemožno prekročiť. */

    cin >> n;
    assert(n <= maxN);

    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }
}

void printArray(int a[], int n) {
   for (int i = 0; i < n; i++) {
       cout << " " << a[i];
   }
   cout << endl;
}

int main() {
    const int maxN = 100;
    int n;
    int a[maxN];

    readArray(a, n, maxN);

    // tu môžeme pole nejako upraviť

    printArray(a, n);
}

Triedenia

Máme pole čísel, chceme ich usporiadať od najmenšieho po najväčšie.

  • Napr. pre pole 9 3 7 4 5 2 chceme dostať 2 3 4 5 7 9
  • Jeden z najštudovanejších problémov v informatike.
  • Súčasť mnohých zložitejších algoritmov.
  • Veľa spôsobov, ako triediť, dnes si ukážeme zopár najjednoduchších.

Bublinkové triedenie (Bubble Sort)

Idea: Kontrolujeme všetky dvojice susedných prvkov a keď vidíme menšie číslo za väčším, vymeníme ich

for (int i = 1; i < n; i++) {
     if (a[i] < a[i - 1]) {
         swap(a[i - 1], a[i]);
     }
}
  • Ak sme nenašli v poli žiadnu dvojicu, ktorú treba vymeniť, skončili sme.
  • Inak celý proces opakujeme znova.

Celé triedenie:

void swap(int &x, int &y) {
    /* Vymeň hodnoty premenných x a y. */
    int tmp = x;
    x = y;
    y = tmp;
}

void sort(int a[], int n) {
    /* usporiadaj prvky v poli a od najmenšieho po najväčší */

    bool hotovo = false;
    while (!hotovo) {
        bool vymenil = false;
        /* porovnávaj všetky dvojice susedov, 
           vymeň ak menší za väčším */
        for (int i = 1; i < n; i++) {
            if (a[i] < a[i - 1]) {
                swap(a[i - 1], a[i]);
                vymenil = true;
            }
        }
        /* ak sme žiadnu dvojicu nevymenili, 
           môžeme skončiť. */
        if (!vymenil) {
            hotovo = true;
        }
    }
}
  • Čo ak vo for cykle dáme for (int i = 0; i < n; i++) { ?
  • Ako nahradíme premennú hotovo príkazom break?

Príklad behu:

prvá iterácia while cyklu
 9 3 7 4 5 2
 3 9 7 4 5 2
 3 7 9 4 5 2
 3 7 4 9 5 2
 3 7 4 5 9 2
 3 7 4 5 2 9

druhá iterácia while cyklu
 3 7 4 5 2 9
 3 4 7 5 2 9
 3 4 5 7 2 9
 3 4 5 2 7 9

tretia iterácia while cyklu
 3 4 5 2 7 9
 3 4 2 5 7 9

štvrtá iterácia while cyklu
 3 4 2 5 7 9
 3 2 4 5 7 9

piata iterácia while cyklu
 3 2 4 5 7 9
 2 3 4 5 7 9

Cvičenie: Ako sa bude správať algoritmus na nasledujúcich vstupoch, koľkokrát zopakuje vonkajší while cyklus?

  • Utriedené pole 1,2,...,n
  • Pole n,1,2,...,n-1
  • Pole 2,3,...,n,1
  • Pole n,n-1,...,1

Triedenie výberom (selection sort, max sort)

Idea: nájdime najväčší prvok a uložme ho na koniec. Potom nájdime najväčší medzi zvyšnými a uložme ho na druhé miesto odzadu atď.

  • V cykle uvádzame ako komentár invariant, podmienku, ktorá na tom mieste vždy platí. Takýto invariant nám pomôže si uvedomiť, že je náš program správny.
int maxIndex(int a[], int n) {
    /* vráť index, na ktorom je najväčší prvok 
       z prvkov a[0]...a[n-1] */
    int index = 0;
    for(int i=1; i<n; i++) {
        if(a[i]>a[index]) {
            index = i;
        }
        /* invariant: a[j]<=a[index] pre vsetky j=0,...,i*/
    }
    return index;
}

void sort(int a[], int n) {
    /* usporiadaj prvky v poli a od najmenšieho po najväčší */

    for(int kam = n - 1; kam >= 1; kam--) {
        /* invariant: a[kam+1]...a[n-1] sú utriedené
         * a pre každé i,j také že 0<=i<=kam, kam<j<n 
         * platí a[i]<=a[j] */
        int index = maxIndex(a, kam + 1);
        swap(a[index], a[kam]);
    }
}

Príklad behu programu

Vstup           9 3 7 4 5 2 
Po výmene (9,2) 2 3 7 4 5 9
Po výmene (7,5) 2 3 5 4 7 9
Po výmene (5,4) 2 3 4 5 7 9
Po výmene (4,4) 2 3 4 5 7 9
Po výmene (3,3) 2 3 4 5 7 9

Cvičenie: Bude čas behu algoritmu výrazne odlišný pre pole utriedené správne a pole utriedené v opačnom poradí?

Triedenie vkladaním (Insertion Sort)

Idea:

  • v prvej časti poľa prvky v utriedenom poradí
  • zober prvý prvok z druhej časti a vlož ho na správne miesto v utriedenom poradí

Príklad behu algoritmu:

 9 3 7 4 5 2
 3 9 7 4 5 2
 3 7 9 4 5 2
 3 4 7 9 5 2
 3 4 5 7 9 2
 2 3 4 5 7 9

Ako spraviť vkladanie:

  • Vkladaný prvok si zapamätáme v pomocnej premennej
  • Utriedené prvky posúvame o jedno doprava, kým nenájdeme správne miesto pre odložený prvok
void sort(int a[], int n) {
    /* usporiadaj prvky v poli a od najmenšieho po najväčší */

    for (int i = 1; i < n; i++) {
        int prvok = a[i];
        int kam = i;
        while (kam > 0 && a[kam - 1] > prvok) {
            a[kam] = a[kam - 1];
            kam--;
        }
        a[kam] = prvok;
    }
}
  • Všimnime si podmienku (kam > 0 && a[kam - 1] > prvok)
    • Ak kam==0, prvá časť je false, druhá časť sa už nevyhodnocuje
    • Ak by sme prehodili časti, program by mohol spadnúť (a[kam - 1] > prvok && kam > 0)

Cvičenie: Ako sa bude správať algoritmus na nasledujúcich vstupoch, koľkokrát zopakuje priradenie a[kam]=a[kam-1]?

  • Utriedené pole 1,2,...,n
  • Pole n,1,2,...,n-1
  • Pole 2,3,...,n,1
  • Pole n,n-1,...,1

Triedenia: zhrnutie

  • Videli sme tri jednoduché algoritmy na triedenie
  • Neskôr sa naučíme rýchlejšie algoritmy na triedenie, ktoré používajú rekurziu
  • Precvičili sme si funkcie, parametre a polia
  • K funkciám je dobré napísať, čo robia
  • Do cyklov si môžeme písať invarianty
    • Používajú sa pri formálnom dokazovaní správnosti
    • Pomáhajú pochopeniu kódu
    • Môžeme ich použiť na ručnú alebo automatickú kontrolu správnosti hodnôt premenných
    • Príkaz assert v knižnici cassert kontroluje podmienku, napr. assert(i>=0 && i<n); ukončí program s chybovou hláškou ak podmienka neplatí

Cvičenie:

  • Na vstupe sú dve n-prvkové množiny (čísla v množine sa neopakujú, ale môžu byť zadané v ľubovoľnom poradí)
  • Zistite, či tieto množiny obsahujú rovnaké prvky
    • Viete pri tom použiť triedenie?

Eratostenovo sito

  • Prvočíslo je prirodzené číslo väčšie ako 1, ktoré je deliteľné len samo sebou a číslom 1.
  • Chceli by sme nájsť všetky prvočísla medzi 2 a n.
  • Napríklad ak n=30, výsledok má byť 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Mohli by sme ísť cez všetky čísla a pre každé testovať, koľko má deliteľov (deliteľov sme už hľadali predtým), ale vieme to spraviť aj rýchlejšie. Použijeme algoritmus zvaný Eratostenovo sito.

  • Vytvoríme pole a pravdivostných hodnôt, kde a[i] nám hovorí, či je i ešte potenciálne prvočíslo.
  • Na začiatku budú všetky hodnoty true, lebo sme ešte žiadne číslo nevylúčili.
  • Začneme číslom 2. Toto je iste prvočíslo, tak ho vypíšeme. O jeho násobkoch však vieme, že iste nemôžu byť prvočísla. Nastavíme preto pre každý násobok j=2*k pravdivostnú hodnotu a[j] na false.
  • Potom prechádzame v poli, kým nenájdeme najbližšiu ďalšiu hodnotu true. Toto číslo je prvočíslo, teda ho vypíšeme a vyškrtáme jeho násobky.
#include <iostream>
using namespace std;

int main() {
    const int n = 30;
    bool a[n + 1];

    for (int i = 2; i <= n; i++) {
        a[i] = true;
    }
    for (int i = 2; i <= n; i++) {
        if (a[i]) {
            cout << i << " ";
            for (int j = 2 * i; j <= n; j = j + i) {
                a[j] = false;
            }
        }
    }
    cout << endl;
}

Výstup programu

2 3 5 7 11 13 17 19 23 29

Priebeh programu:

0  1  2  3  4  5  6  7  8  9 10 11 12 ...
?  ?  T  T  T  T  T  T  T  T  T  T  T ... na zaciatku
?  ?  T  T  F  T  F  T  F  T  F  T  F ... po vyskrtani i=2
?  ?  T  T  F  T  F  T  F  F  F  T  F ... po vyskrtani i=3
?  ?  T  T  F  T  F  T  F  F  F  T  F ... dalej sa uz skrtaju len vacsie cisla

Cvičenie: Napíšte funkciu, ktorá uloží prvočísla medzi 2 a n do poľa (ak by sme ich chceli použiť na ďalšie výpočty).


Zdrojový kód programu s triedeniami

/* Program s triedeniami z prednášky 6.
   http://compbio.fmph.uniba.sk/vyuka/prog/index.php/Predn%C3%A1%C5%A1ka_6 */
#include <iostream>
#include <cassert>
using namespace std;

void swap(int &x, int &y) {
    /* Vymeň hodnoty premenných x a y. */
    int tmp = x;
    x = y;
    y = tmp;
}

void readArray(int a[], int &n, int maxN) {
    /* Od užívateľa načíta počet vstupných čísel,
     * tento počet uloží do premennej n. 
     * Potom načíta n celých čísel a uloží ich do poľa a,
     * Hodnota maxN je veľkosť poľa,
     * ktorú nemožno prekročiť. */

    cin >> n;
    assert(n <= maxN);
    for (int i = 0; i < n; i++) {
        cin >> a[i];
    }
}

void printArray(int a[], int n) {
   for (int i = 0; i < n; i++) {
       cout << " " << a[i];
   }
   cout << endl;
}

void bubbleSort(int a[], int n) {
    /* usporiadaj prvky v poli a od najmenšieho po najväčší */

    bool hotovo = false;
    while (!hotovo) {
        bool vymenil = false;
        /* porovnávaj všetky dvojice susedov, vymeň ak menší za väčším */
        for (int i = 1; i < n; i++) {
            if (a[i] < a[i - 1]) {
                swap(a[i - 1], a[i]);
                vymenil = true;
            }
        }
        /* ak sme žiadnu dvojicu nevymenili, môžeme skončiť. */
        if (!vymenil) {
            hotovo = true;
        }
    }
}
int maxIndex(int a[], int n) {
    /* vráť index, na ktorom je najväčší prvok z prvkov a[0]...a[n-1] */
    int index = 0;
    for(int i=1; i<n; i++) {
        if(a[i]>a[index]) {
            index = i;
        }
        /* invariant: a[j]<=a[index] pre všetky j=0,...,i*/
    }
    return index;
}

void selectionSort(int a[], int n) {
    /* usporiadaj prvky v poli a od najmenšieho po najväčší */

    for(int kam=n-1; kam>=1; kam--) {
        /* invariant: a[kam+1]...a[n-1] sú utriedené
         * a pre každé i,j také že 0<=i<=kam, kam<j<n platí a[i]<=a[j] */
        int index = maxIndex(a, kam+1);
        swap(a[index], a[kam]);
    }
}

void insertionSort(int a[], int n) {
    /* usporiadaj prvky v poli a od najmenšieho po najväčší */

    for (int i = 1; i < n; i++) {
        // inv1
        int prvok = a[i];
        int kam = i;
        while (kam > 0 && a[kam - 1] > prvok) {
            // inv2
            a[kam] = a[kam - 1];
            kam--;
        }
        a[kam] = prvok;
    }
}

int main() {
    const int maxN = 100;
    int n;
    int a[maxN];

    readArray(a, n, maxN);

    printArray(a, n);
    insertionSort(a, n);
    printArray(a,n);
}