Basic Information

NameFumarate hydratase, mitochondrial (Fumarase) (EC 4.2.1.2)
Uniprot IDP08417
Systematic gene nameYPL262W
Standard gene nameFUM1
Gene namesFUM1 YPL262W
Description from SGDYPL262W FUM1 SGDID:S000006183, Chr XVI from 47336-48802, Genome Release 64-3-1, Verified ORF, "Fumarase; converts fumaric acid to L-malic acid in the TCA cycle; cytosolic and mitochondrial distribution determined by the N-terminal targeting sequence, protein conformation, and status of glyoxylate shunt; phosphorylated in mitochondria"
Protein length488
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MLRFTNCSCK TFVKSSYKLN IRRMNSSFRT ETDAFGEIHV PADKYWGAQT
QRSFQNFKIG GARERMPLPL VHAFGVLKKS AAIVNESLGG LDPKISKAIQ
QAADEVASGK LDDHFPLVVF QTGSGTQSNM NANEVISNRA IEILGGKIGS
KQVHPNNHCN QSQSSNDTFP TVMHIAASLQ IQNELIPELT NLKNALEAKS
KEFDHIVKIG RTHLQDATPL TLGQEFSGYV QQVENGIQRV AHSLKTLSFL
AQGGTAVGTG LNTKPGFDVK IAEQISKETG LKFQTAPNKF EALAAHDAIV
ECSGALNTLA CSLFKIAQDI RYLGSGPRCG YHELMLPENE PGSSIMPGKV
NPTQNEALTQ VCVQVMGNNA AITFAGSQGQ FELNVFKPVM IANLLNSIRL
ITDAAYSFRV HCVEGIKANE PRIHELLTKS LMLVTALNPK IGYDAASKVA
KNAHKKGITL KESALELGVL TEKEFDEWVV PEHMLGPK

Legend

  • X Phoshorylation
  • X K-Succinylation
  • X Multiple modifications
  • X Deamidation

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[30, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[44, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[58, K-succ]Weinert, B.T., Schölz, C., Wagner, S.A., et al. (2013). Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Reports, 4(4), 842-851. (Publication) (All modifications)
[58, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[58, K-acetyl]Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications)
[78, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[78, K-succ]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[78, Ubi]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[79, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[79, K-succ]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[79, Ubi]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[80, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[94, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[96, Phos]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[97, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[108, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[122, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[122, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[122, Phos]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[122, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[124, Phos]Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150. (Publication) (All modifications)
[124, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[124, Phos]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[124, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[126, Phos]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[128, Phos]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[147, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[199, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[201, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[208, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[208, K-acetyl]Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications)
[239, Deam]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[245, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[245, K-succ]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[264, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[264, K-succ]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[277, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[277, K-acetyl]Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications)
[285, Phos]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[303, Phos]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[417, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[428, Phos]Reinders J, Wagner K, Zahedit RP, et al (2007) Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Molecular and Cellular Proteomics 6:1896–1906. (Publication) (All modifications)
[428, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[428, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[429, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[429, K-succ]Wang, S., Ramamurthy, D., Tan, J., Liu, J., Yip, J., Chua, A., Yu, Z., Lim, T.K., Lin, Q., Pines, O., Lehming, N. (2020). Post-translational modifications of fumarase regulate its enzyme activity and function in respiration and the DNA damage response. J Mol Biol 432: 6108-6126. (Publication) (All modifications)
[440, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[448, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[448, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[451, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[473, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[488, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)