Basic Information

NameKinesin-like protein CIN8 (Chromosome instability protein 8)
Uniprot IDP27895
Systematic gene nameYEL061C
Standard gene nameCIN8
Gene namesCIN8 KSL2 YEL061C
Description from SGDYEL061C CIN8 SGDID:S000000787, Chr V from 39537-36535, Genome Release 64-3-1, reverse complement, Verified ORF, "Bipolar kinesin motor protein; switches from minus- to plus-end-directed motility in vitro depending on conditions; involved in mitotic spindle assembly and chromosome segregation"
Protein length1000
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MPAENQNTGQ DRSSNSISKN GNSQVGCHTV PNEELNITVA VRCRGRNERE
ISMKSSVVVN VPDITGSKEI SINTTGDTGI TAQMNAKRYT VDKVFGPGAS
QDLIFDEVAG PLFQDFIKGY NCTVLVYGMT STGKTYTMTG DEKLYNGELS
DAAGIIPRVL LKLFDTLELQ QNDYVVKCSF IELYNEELKD LLDSNSNGSS
NTGFDGQFMK KLRIFDSSTA NNTTSNSASS SRSNSRNSSP RSLNDLTPKA
ALLRKRLRTK SLPNTIKQQY QQQQAVNSRN NSSSNSGSTT NNASSNTNTN
NGQRSSMAPN DQTNGIYIQN LQEFHITNAM EGLNLLQKGL KHRQVASTKM
NDFSSRSHTI FTITLYKKHQ DELFRISKMN LVDLAGSENI NRSGALNQRA
KEAGSINQSL LTLGRVINAL VDKSGHIPFR ESKLTRLLQD SLGGNTKTAL
IATISPAKVT SEETCSTLEY ASKAKNIKNK PQLGSFIMKD ILVKNITMEL
AKIKSDLLST KSKEGIYMSQ DHYKNLNSDL ESYKNEVQEC KREIESLTSK
NALLVKDKLK SKETIQSQNC QIESLKTTID HLRAQLDKQH KTEIEISDFN
NKLQKLTEVM QMALHDYKKR ELDLNQKFEM HITKEIKKLK STLFLQLNTM
QQESILQETN IQPNLDMIKN EVLTLMRTMQ EKAELMYKDC VKKILNESPK
FFNVVIEKID IIRVDFQKFY KNIAENLSDI SEENNNMKQY LKNHFFKNNH
QELLNRHVDS TYENIEKRTN EFVENFKKVL NDHLDENKKL IMQNLTTATS
AVIDQEMDLF EPKRVKWENS FDLINDCDSM NNEFYNSMAA TLSQIKSTVD
TSSNSMNESI SVMKGQVEES ENAISLLKNN TKFNDQFEQL INKHNMLKDN
IKNSITSTHS HITNVDDIYN TIENIMKNYG NKENATKDEM IENILKEIPN
LSKKMPLRLS NINSNSVQSV ISPKKHAIED ENKSSENVDN EGSRKMLKIE

Legend

  • X Phoshorylation

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[227, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[227, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[227, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[227, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[227, Phos]Chee, M.K., Haase, S.B. (2010). B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast. PLoS Genet 6: e1000935. (Publication) (All modifications)
[230, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[231, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[239, Phos]Goldstein, A., Siegler, N., Goldman, D., Judah, H., Valk, E., Kõivomägi, M., Loog, M., Gheber, L. (2017). Three Cdk1 sites in the kinesin-5 Cin8 catalytic domain coordinate motor localization and activity during anaphase. Cell. Mol. Life Sci. 74: 3395-3412. (Publication) (All modifications)
[247, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[247, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[247, Phos]Goldstein, A., Siegler, N., Goldman, D., Judah, H., Valk, E., Kõivomägi, M., Loog, M., Gheber, L. (2017). Three Cdk1 sites in the kinesin-5 Cin8 catalytic domain coordinate motor localization and activity during anaphase. Cell. Mol. Life Sci. 74: 3395-3412. (Publication) (All modifications)
[261, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[261, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[261, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[261, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[261, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[261, Phos]Chee, M.K., Haase, S.B. (2010). B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast. PLoS Genet 6: e1000935. (Publication) (All modifications)
[261, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[299, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[299, Phos]Holt, L.J.,  Tuch, B.B.,  Villén, J.,  Johnson, A.D.,  Gygi, S.P.,  Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications)
[299, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[455, Phos]Goldstein, A., Siegler, N., Goldman, D., Judah, H., Valk, E., Kõivomägi, M., Loog, M., Gheber, L. (2017). Three Cdk1 sites in the kinesin-5 Cin8 catalytic domain coordinate motor localization and activity during anaphase. Cell. Mol. Life Sci. 74: 3395-3412. (Publication) (All modifications)
[519, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[687, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[687, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[799, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[799, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[969, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[969, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[972, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[972, Phos]Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications)
[972, Phos]Guo X, Niemi NM, Coon JJ, Pagliarini DJ (2017a) Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 292:11751–11759. (Publication) (All modifications)
[972, Phos]Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232. (Publication) (All modifications)
[972, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[972, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[972, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[972, Phos]Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications)
[972, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[972, Phos]Chee, M.K., Haase, S.B. (2010). B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast. PLoS Genet 6: e1000935. (Publication) (All modifications)
[972, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[984, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[984, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[984, Phos]Chee, M.K., Haase, S.B. (2010). B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast. PLoS Genet 6: e1000935. (Publication) (All modifications)
[984, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)