Basic Information
Name | tRNA pseudouridine(38/39) synthase (EC 5.4.99.45) (Depressed growth-rate protein DEG1) (tRNA pseudouridine synthase 3) (tRNA pseudouridylate synthase 3) (tRNA-uridine isomerase 3) |
Uniprot ID | P31115 |
Systematic gene name | YFL001W |
Standard gene name | DEG1 |
Gene names | DEG1 HRM3 PUS3 YFL001W |
Description from SGD | YFL001W DEG1 SGDID:S000001895, Chr VI from 147131-148459, Genome Release 64-3-1, Verified ORF, "tRNA:pseudouridine synthase; introduces pseudouridines at position 38 or 39 in tRNA; also responsible for pseudouracil modification of some mRNAs; important for maintenance of translation efficiency and normal cell growth, localizes to both the nucleus and cytoplasm; non-essential for viability" |
Protein length | 442 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MSNFIRRLVG KMKAISTGTN AIVSKKDSIY ANWSKEQLIR RITELENANK
PHSEKFQHIE DNKKRKISQE EVTRSKAKKA PKKFDFSKHN TRFIALRFAY
LGWNYNGLAV QKEYTPLPTV EGTILEAMNK CKLVPSMVLQ DYKFSRCGRT
DKGVSAMNQV ISLEVRSNLT DEEQRDPTND SREIPYVHVL NQLLPDDIRI
SAVCLRPPPN FDARFSCVHR HYKYIFNGKN LNIEKMSKAA SYFVGERDFR
NFCKLDGSKQ ITNFKRTIIS SKILPLSETF YCFDLVGSAF LWHQVRCMMA
ILFLVGQSLE VPEIVLRLTD IEKTPQRPVY EMANDIPLLL YDCKFPEMDW
QEPTVDDYKA IKFTTATEAL TLHYELKAAV CNIFKDVLPT ANTNNFSKTI
INLGDGRGKV VGTYVKLEDR SVMEPVEVVN AKYSKKKNNK NK
PHSEKFQHIE DNKKRKISQE EVTRSKAKKA PKKFDFSKHN TRFIALRFAY
LGWNYNGLAV QKEYTPLPTV EGTILEAMNK CKLVPSMVLQ DYKFSRCGRT
DKGVSAMNQV ISLEVRSNLT DEEQRDPTND SREIPYVHVL NQLLPDDIRI
SAVCLRPPPN FDARFSCVHR HYKYIFNGKN LNIEKMSKAA SYFVGERDFR
NFCKLDGSKQ ITNFKRTIIS SKILPLSETF YCFDLVGSAF LWHQVRCMMA
ILFLVGQSLE VPEIVLRLTD IEKTPQRPVY EMANDIPLLL YDCKFPEMDW
QEPTVDDYKA IKFTTATEAL TLHYELKAAV CNIFKDVLPT ANTNNFSKTI
INLGDGRGKV VGTYVKLEDR SVMEPVEVVN AKYSKKKNNK NK
Legend
- X Phoshorylation
- X K-acetylation
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[28, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[55, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |
[68, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[68, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[68, Phos] | Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232. (Publication) (All modifications) |
[68, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[68, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[68, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[68, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[68, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[68, Phos] | Soulard, A., Cremonesi, A., Moes, S., Schütz, F., Jenö, P., Hall, M.N. (2010). The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Molecular Biology of the Cell 21(19): 3475-3486. (Publication) (All modifications) |
[68, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[68, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[83, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |