Basic Information
Name | Ubiquitin fusion degradation protein 4 (UB fusion protein 4) (EC 2.3.2.-) (HECT-type E3 ubiquitin transferase UFD4) (EC 2.3.2.26) |
Uniprot ID | P33202 |
Systematic gene name | YKL010C |
Standard gene name | UFD4 |
Gene names | UFD4 YKL010C YKL162 |
Description from SGD | YKL010C UFD4 SGDID:S000001493, Chr XI from 425875-421424, Genome Release 64-3-1, reverse complement, Verified ORF, "Ubiquitin-protein ligase (E3); interacts with Rpt4p and Rpt6p, two subunits of the 19S particle of the 26S proteasome; involved in K29-linked ubiquitin-dependent protein catabolism, including ubiquitin fusion proteins; relative distribution to the nucleus increases upon DNA replication stress" |
Protein length | 1483 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MSENNSHNLD EHESHSENSD YMMDTQVEDD YDEDGHVQGE YSYYPDEDED
EHMLSSVGSF EADDGEDDDN DYHHEDDSGL LYGYHRTQNG SDEDRNEEED
GLERSHDNNE FGSNPLHLPD ILETFAQRLE QRRQTSEGLG QHPVGRTLPE
ILSMIGGRME RSAESSARNE RISKLIENTG NASEDPYIAM ESLKELSENI
LMMNQMVVDR IIPMETLIGN IAAILSDKIL REELELQMQA CRCMYNLFEV
CPESISIAVD EHVIPILQGK LVEISYIDLA EQVLETVEYI SRVHGRDILK
TGQLSIYVQF FDFLTIHAQR KAIAIVSNAC SSIRTDDFKT IVEVLPTLKP
IFSNATDQPI LTRLVNAMYG ICGALHGVDK FETLFSLDLI ERIVQLVSIQ
DTPLENKLKC LDILTVLAMS SDVLSRELRE KTDIVDMATR SFQHYSKSPN
AGLHETLIYV PNSLLISISR FIVVLFPPED ERILSADKYT GNSDRGVISN
QEKFDSLVQC LIPILVEIYT NAADFDVRRY VLIALLRVVS CINNSTAKAI
NDQLIKLIGS ILAQKETASN ANGTYSSEAG TLLVGGLSLL DLICKKFSEL
FFPSIKREGI FDLVKDLSVD FNNIDLKEDG NENISLSDEE GDLHSSIEEC
DEGDEEYDYE FTDMEIPDSV KPKKISIHIF RTLSLAYIKN KGVNLVNRVL
SQMNVEQEAI TEELHQIEGV VSILENPSTP DKTEEDWKGI WSVLKKCIFH
EDFDVSGFEF TSTGLASSIT KRITSSTVSH FILAKSFLEV FEDCIDRFLE
ILQSALTRLE NFSIVDCGLH DGGGVSSLAK EIKIKLVYDG DASKDNIGTD
LSSTIVSVHC IASFTSLNEF LRHRMVRMRF LNSLIPNLTS SSTEADREEE
ENCLDHMRKK NFDFFYDNEK VDMESTVFGV IFNTFVRRNR DLKTLWDDTH
TIKFCKSLEG NNRESEAAEE ANEGKKLRDF YKKREFAQVD TGSSADILTL
LDFLHSCGVK SDSFINSKLS AKLARQLDEP LVVASGALPD WSLFLTRRFP
FLFPFDTRML FLQCTSFGYG RLIQLWKNKS KGSKDLRNDE ALQQLGRITR
RKLRISRKTI FATGLKILSK YGSSPDVLEI EYQEEAGTGL GPTLEFYSVV
SKYFARKSLN MWRCNSYSYR SEMDVDTTDD YITTLLFPEP LNPFSNNEKV
IELFGYLGTF VARSLLDNRI LDFRFSKVFF ELLHRMSTPN VTTVPSDVET
CLLMIELVDP LLAKSLKYIV ANKDDNMTLE SLSLTFTVPG NDDIELIPGG
CNKSLNSSNV EEYIHGVIDQ ILGKGIEKQL KAFIEGFSKV FSYERMLILF
PDELVDIFGR VEEDWSMATL YTNLNAEHGY TMDSSIIHDF ISIISAFGKH
ERRLFLQFLT GSPKLPIGGF KSLNPKFTVV LKHAEDGLTA DEYLPSVMTC
ANYLKLPKYT SKDIMRSRLC QAIEEGAGAF LLS
EHMLSSVGSF EADDGEDDDN DYHHEDDSGL LYGYHRTQNG SDEDRNEEED
GLERSHDNNE FGSNPLHLPD ILETFAQRLE QRRQTSEGLG QHPVGRTLPE
ILSMIGGRME RSAESSARNE RISKLIENTG NASEDPYIAM ESLKELSENI
LMMNQMVVDR IIPMETLIGN IAAILSDKIL REELELQMQA CRCMYNLFEV
CPESISIAVD EHVIPILQGK LVEISYIDLA EQVLETVEYI SRVHGRDILK
TGQLSIYVQF FDFLTIHAQR KAIAIVSNAC SSIRTDDFKT IVEVLPTLKP
IFSNATDQPI LTRLVNAMYG ICGALHGVDK FETLFSLDLI ERIVQLVSIQ
DTPLENKLKC LDILTVLAMS SDVLSRELRE KTDIVDMATR SFQHYSKSPN
AGLHETLIYV PNSLLISISR FIVVLFPPED ERILSADKYT GNSDRGVISN
QEKFDSLVQC LIPILVEIYT NAADFDVRRY VLIALLRVVS CINNSTAKAI
NDQLIKLIGS ILAQKETASN ANGTYSSEAG TLLVGGLSLL DLICKKFSEL
FFPSIKREGI FDLVKDLSVD FNNIDLKEDG NENISLSDEE GDLHSSIEEC
DEGDEEYDYE FTDMEIPDSV KPKKISIHIF RTLSLAYIKN KGVNLVNRVL
SQMNVEQEAI TEELHQIEGV VSILENPSTP DKTEEDWKGI WSVLKKCIFH
EDFDVSGFEF TSTGLASSIT KRITSSTVSH FILAKSFLEV FEDCIDRFLE
ILQSALTRLE NFSIVDCGLH DGGGVSSLAK EIKIKLVYDG DASKDNIGTD
LSSTIVSVHC IASFTSLNEF LRHRMVRMRF LNSLIPNLTS SSTEADREEE
ENCLDHMRKK NFDFFYDNEK VDMESTVFGV IFNTFVRRNR DLKTLWDDTH
TIKFCKSLEG NNRESEAAEE ANEGKKLRDF YKKREFAQVD TGSSADILTL
LDFLHSCGVK SDSFINSKLS AKLARQLDEP LVVASGALPD WSLFLTRRFP
FLFPFDTRML FLQCTSFGYG RLIQLWKNKS KGSKDLRNDE ALQQLGRITR
RKLRISRKTI FATGLKILSK YGSSPDVLEI EYQEEAGTGL GPTLEFYSVV
SKYFARKSLN MWRCNSYSYR SEMDVDTTDD YITTLLFPEP LNPFSNNEKV
IELFGYLGTF VARSLLDNRI LDFRFSKVFF ELLHRMSTPN VTTVPSDVET
CLLMIELVDP LLAKSLKYIV ANKDDNMTLE SLSLTFTVPG NDDIELIPGG
CNKSLNSSNV EEYIHGVIDQ ILGKGIEKQL KAFIEGFSKV FSYERMLILF
PDELVDIFGR VEEDWSMATL YTNLNAEHGY TMDSSIIHDF ISIISAFGKH
ERRLFLQFLT GSPKLPIGGF KSLNPKFTVV LKHAEDGLTA DEYLPSVMTC
ANYLKLPKYT SKDIMRSRLC QAIEEGAGAF LLS
Legend
- X Phoshorylation
- X Ubiquitination
- X SUMOylation
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[14, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[19, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[87, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[87, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[87, Phos] | Soulard, A., Cremonesi, A., Moes, S., Schütz, F., Jenö, P., Hall, M.N. (2010). The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Molecular Biology of the Cell 21(19): 3475-3486. (Publication) (All modifications) |
[87, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[91, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[91, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[91, Phos] | Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232. (Publication) (All modifications) |
[91, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[91, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[91, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[91, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[91, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[91, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[105, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[105, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[135, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[135, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[135, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[135, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[135, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[135, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[135, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[136, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[136, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[136, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[136, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[136, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[153, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[174, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[197, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[488, Ubi] | Back, S., Gorman, A.W., Vogel, C., Silva, G.M. (2019). Site-specific K63 ubiquitinomics provides insights into translation regulation under stress. Journal of Proteome Research 18(1): 309-318. (Publication) (All modifications) |
[682, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[682, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[684, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[684, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[684, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[687, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[687, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[1079, SUMO] | Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V,, Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., Johnson, J.R., Krogan, N.J., Hunter, N. (2021). SUMO is a pervasive regulator of meiosis. Elife 10:e57720. (Publication) (All modifications) |
[1081, SUMO] | Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V,, Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., Johnson, J.R., Krogan, N.J., Hunter, N. (2021). SUMO is a pervasive regulator of meiosis. Elife 10:e57720. (Publication) (All modifications) |
[1084, SUMO] | Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V,, Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., Johnson, J.R., Krogan, N.J., Hunter, N. (2021). SUMO is a pervasive regulator of meiosis. Elife 10:e57720. (Publication) (All modifications) |
[1106, Phos] | Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications) |
[1119, Phos] | Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications) |
[1166, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |