Basic Information

NamePhosphatidylinositol 4-kinase STT4 (PI4-kinase) (PtdIns-4-kinase) (EC 2.7.1.67)
Uniprot IDP37297
Systematic gene nameYLR305C
Standard gene nameSTT4
Gene namesSTT4 YLR305C L2142.4
Description from SGDYLR305C STT4 SGDID:S000004296, Chr XII from 743863-738161, Genome Release 64-3-1, reverse complement, Verified ORF, "Phosphatidylinositol-4-kinase; functions in the Pkc1p protein kinase pathway; required for normal vacuole morphology, cell wall integrity, and actin cytoskeleton organization; required for autophagosomevacuole fusion during autophagy and for lipophagy in both stationary phase cells and during nitrogen starvation; localizes to the plasma membrane and mitochondria in HTP studies"
Protein length1900
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MRFTRGLKAS SSLRAKAIGR LTKLSTGAPN DQNSNGTTLD LITHTLPIFY
STNTSKIYTI PLTLSEWEVL TSLCVAIPTT LDLVETMLKE IIAPYFLETP
RQRISDVLSS KFKLEQMRNP IELLTFQLTK FMIQACEQYP VLYENIGGII
STYFERVLKI FTIKQSGLLS LVGFINAFIQ FPNSTELTKF TWKKLAKLVL
RGSFLNEVDK ILNSSATFTN DSIVQYYDAG NELSSAYLLE LISRLQVSLI
SHLLNTSHVG ANLSEFLLNQ QYQFYKFDQE VADENDDTKC IDDFFFNVRS
NKQFFTDMCK ISLQFCSESH ILDLSTDNRA RFSFDTRAHY LQTLCLIPFI
EDTESELFES FTNVVSESID KFFLSDVVTP SLIKAIVASA SLLNFFTEKL
SLTLIRMFPL LVASPHITTE TVNDVAKIFT TGLYPLNEDA IVSTIYSMNN
LLAVSEDGSP VPVLRERQLT ITSGKNIEKD YFPLRNSSAS LDGTGALLGN
TTVGQLSSHD VNSGATMTYH ASLISNCVAA TTTIASYYNT QSITALTISI
LTQKVNSMSK ELDGVILNSL ARLAPNTSLT EFSLLLKFFK SRTVIATKID
DSALLKNIIK AKCVISKELL ARHFSSDLYF MYLHDLLDSI IASGEVERLE
HHRPQTEISR VADQIATYLE PLAALLPVPG DTPLDINKDE VTTNKFRNAW
FNFVIHGYHL GGPIVKRNFS FLLTIAYNSP PLASEFPANN KELSLEMNTI
LRRGSSNENI KQQKQQITEY FNTNIVQYRT TSSSKIMFLA AAVLLETIRC
EAGDCSKTLL YFSDPSILSG SIEKCIAVLS VSMIRKYARL IQKGNDAIFN
SKMIAQQLNN LLLCLSHREP TLQDAAFHAC EIFIRSIPSS LCHHLSLYTL
LDMLTALFDS ILDSEAHKFE PRYEFKLKHS KTTILVPSSS SWRATTLSRL
HKSAKEWVRI LLNRSNQDTK ILLQSYISDL GEYSRLNSVE FGVSFAMDMA
GLILPADKEL SRLTYYGPEK PNTISGFISL HSWRSKYLFD TAITSSPEDI
KRQIGISTQN IRKNLTLGNK IITKDVTDFL DMATALLILG NGAPASLIYD
IVHIPFEVFT SASLKIATNV WLTIITEKPE VAHLLLVEVC YCWMRSIDDN
IGLYSRDHDL KGEEYQKMEY SPYDKAGINR DAKNASQAMQ PHLHVIKFFA
SHFEGTLFQS DFLLKIFTKC ALYGIKNLYK ASLHPFARMI RHELLLFATL
VLNASYKQGS KYMGRLSQEI TNGALSWFKR PVAWPFGSNE LKIKADLSVT
RDLFLQLNKL SSLMSRHCGK DYKILNYFLA SEIQQIQTWL TPTEKIEGAD
SNELTSDIVE ATFAKDPTLA INLLQRCYSK KAEDVLVGLV AKHALMCVGS
PSALDLFIKG SHLSSKKDLH ATLYWAPVSP LKSINLFLPE WQGNSFILQF
SIYSLESQDV NLAFFYVPQI VQCLRYDKTG YVERLILDTA KISVLFSHQI
IWNMLANCYK DDEGIQEDEI KPTLDRIRER MVSSFSQSHR DFYEREFEFF
DEVTGISGKL KPYIKKSKAE KKHKIDEEMS KIEVKPDVYL PSNPDGVVID
IDRKSGKPLQ SHAKAPFMAT FKIKKDVKDP LTGKNKEVEK WQAAIFKVGD
DCRQDVLALQ LISLFRTIWS SIGLDVYVFP YRVTATAPGC GVIDVLPNSV
SRDMLGREAV NGLYEYFTSK FGNESTIEFQ NARNNFVKSL AGYSVISYLL
QFKDRHNGNI MYDDQGHCLH IDFGFIFDIV PGGIKFEAVP FKLTKEMVKV
MGGSPQTPAY LDFEELCIKA YLAARPHVEA IIECVNPMLG SGLPCFKGHK
TIRNLRARFQ PQKTDHEAAL YMKALIRKSY ESIFTKGYDE FQRLTNGIPY

Legend

  • X Phoshorylation
  • X Ubiquitination

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[110, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[110, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[459, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[459, Phos]Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications)
[459, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[459, Phos]Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications)
[459, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[470, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[470, Phos]Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications)
[470, Phos]Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150. (Publication) (All modifications)
[470, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[470, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[470, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[470, Phos]Holt, L.J.,  Tuch, B.B.,  Villén, J.,  Johnson, A.D.,  Gygi, S.P.,  Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications)
[470, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[470, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[472, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[472, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[472, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[473, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[473, Phos]Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications)
[473, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[473, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[473, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[473, Phos]Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications)
[473, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[473, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[475, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[479, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[487, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[488, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[490, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[507, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[508, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[513, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[602, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[602, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[930, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[930, Phos]Holt, L.J.,  Tuch, B.B.,  Villén, J.,  Johnson, A.D.,  Gygi, S.P.,  Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications)
[930, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[1014, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[1175, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)