Basic Information

NameSerine/threonine-protein kinase MEC1 (EC 2.7.11.1) (ATR homolog) (DNA-damage checkpoint kinase MEC1) (Mitosis entry checkpoint protein 1)
Uniprot IDP38111
Systematic gene nameYBR136W
Standard gene nameMEC1
Gene namesMEC1 ESR1 SAD3 YBR136W YBR1012
Description from SGDYBR136W MEC1 SGDID:S000000340, Chr II from 505668-512774, Genome Release 64-3-1, Verified ORF, "Genome integrity checkpoint protein and PI kinase superfamily member; Mec1p and Dun1p function in same pathway to regulate dNTP pools and telomere length; signal transducer required for cell cycle arrest and transcriptional responses to damaged or unreplicated DNA; facilitates replication fork progression and regulates P-body formation under replication stress; promotes interhomolog recombination by phosphorylating Hop1p; associates with shortened, dysfunctional telomeres"
Protein length2368
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MESHVKYLDE LILAIKDLNS GVDSKVQIKK VPTDPSSSQE YAKSLKILNT
LIRNLKDQRR NNIMKNDTIF SKTVSALALL LEYNPFLLVM KDSNGNFEIQ
RLIDDFLNIS VLNYDNYHRI WFMRRKLGSW CKACVEFYGK PAKFQLTAHF
ENTMNLYEQA LTEVLLGKTE LLKFYDTLKG LYILLYWFTS EYSTFGNSIA
FLDSSLGFTK FDFNFQRLIR IVLYVFDSCE LAALEYAEIQ LKYISLVVDY
VCNRTISTAL DAPALVCCEQ LKFVLTTMHH FLDNKYGLLD NDPTMAKGIL
RLYSLCISND FSKCFVDHFP IDQWADFSQS EHFPFTQLTN KALSIVYFDL
KRRSLPVEAL KYDNKFNIWV YQSEPDSSLK NVTSPFDDRY KQLEKLRLLV
LKKFNKTERG TLLKYRVNQL SPGFFQRAGN DFKLILNEAS VSIQTCFKTN
NITRLTSWTV ILGRLACLES EKFSGTLPNS TKDMDNWYVC HLCDIEKTGN
PFVRINPNRP EAAGKSEIFR ILHSNFLSHP NIDEFSESLL SGILFSLHRI
FSHFQPPKLT DGNGQINKSF KLVQKCFMNS NRYLRLLSTR IIPLFNISDS
HNSEDEHTAT LIKFLQSQKL PVVKENLVIA WTQLTLTTSN DVFDTLLLKL
IDIFNSDDYS LRIMMTLQIK NMAKILKKTP YQLLSPILPV LLRQLGKNLV
ERKVGFQNLI ELLGYSSKTI LDIFQRYIIP YAIIQYKSDV LSEIAKIMCD
GDTSLINQMK VNLLKKNSRQ IFAVALVKHG LFSLDILETL FLNRAPTFDK
GYITAYLPDY KTLAEITKLY KNSVTKDASD SENANMILCS LRFLITNFEK
DKRHGSKYKN INNWTDDQEQ AFQKKLQDNI LGIFQVFSSD IHDVEGRTTY
YEKLRVINGI SFLIIYAPKK SIISALAQIS ICLQTGLGLK EVRYEAFRCW
HLLVRHLNDE ELSTVIDSLI AFILQKWSEF NGKLRNIVYS ILDTLIKEKS
DLILKLKPYT TLALVGKPEL GILARDGQFA RMVNKIRSTT DLIPIFANNL
KSSNKYVINQ NLDDIEVYLR RKQTERSIDF TPKKVGQTSD ITLVLGALLD
TSHKFRNLDK DLCEKCAKCI SMIGVLDVTK HEFKRTTYSE NEVYDLNDSV
QTIKFLIWVI NDILVPAFWQ SENPSKQLFV ALVIQESLKY CGLSSESWDM
NHKELYPNEA KLWEKFNSVS KTTIYPLLSS LYLAQSWKEY VPLKYPSNNF
KEGYKIWVKR FTLDLLKTGT TENHPLHVFS SLIREDDGSL SNFLLPYISL
DIIIKAEKGT PYADILNGII IEFDSIFTCN LEGMNNLQVD SLRMCYESIF
RVFEYCKKWA TEFKQNYSKL HGTFIIKDTK TTNMLLRIDE FLRTTPSDLL
AQRSLETDSF ERSALYLEQC YRQNPHDKNQ NGQLLKNLQI TYEEIGDIDS
LDGVLRTFAT GNLVSKIEEL QYSENWKLAQ DCFNVLGKFS DDPKTTTRML
KSMYDHQLYS QIISNSSFHS SDGKISLSPD VKEWYSIGLE AANLEGNVQT
LKNWVEQIES LRNIDDREVL LQYNIAKALI AISNEDPLRT QKYIHNSFRL
IGTNFITSSK ETTLLKKQNL LMKLHSLYDL SFLSSAKDKF EYKSNTTILD
YRMERIGADF VPNHYILSMR KSFDQLKMNE QADADLGKTF FTLAQLARNN
ARLDIASESL MHCLERRLPQ AELEFAEILW KQGENDRALK IVQEIHEKYQ
ENSSVNARDR AAVLLKFTEW LDLSNNSASE QIIKQYQDIF QIDSKWDKPY
YSIGLYYSRL LERKKAEGYI TNGRFEYRAI SYFLLAFEKN TAKVRENLPK
VITFWLDIAA ASISEAPGNR KEMLSKATED ICSHVEEALQ HCPTYIWYFV
LTQLLSRLLH SHQSSAQIIM HILLSLAVEY PSHILWYITA LVNSNSSKRV
LRGKHILEKY RQHSQNPHDL VSSALDLTKA LTRVCLQDVK SITSRSGKSL
EKDFKFDMNV APSAMVVPVR KNLDIISPLE SNSMRGYQPF RPVVSIIRFG
SSYKVFSSLK KPKQLNIIGS DGNIYGIMCK KEDVRQDNQY MQFATTMDFL
LSKDIASRKR SLGINIYSVL SLREDCGILE MVPNVVTLRS ILSTKYESLK
IKYSLKSLHD RWQHTAVDGK LEFYMEQVDK FPPILYQWFL ENFPDPINWF
NARNTYARSY AVMAMVGHIL GLGDRHCENI LLDIQTGKVL HVDFDCLFEK
GKRLPVPEIV PFRLTPNLLD ALGIIGTEGT FKKSSEVTLA LMRKNEVALM
NVIETIMYDR NMDHSIQKAL KVLRNKIRGI DPQDGLVLSV AGQTETLIQE
ATSEDNLSKM YIGWLPFW

Legend

  • X Phoshorylation
  • X SUMOylation

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[33, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[33, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[36, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[36, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[36, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[36, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[37, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[37, Phos]Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232. (Publication) (All modifications)
[37, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[37, Phos]Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications)
[37, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[37, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[38, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[38, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[38, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[38, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[38, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[38, Phos]Chen, S.H., Albuquerque, C.P., Liang, J., Suhandynata, R.T., Zhou, H. (2010). A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285: 12803-12812. (Publication) (All modifications)
[38, Phos]Smolka, M.B., Albuquerque, C.P., Chen, S.H., Zhou, H. (2007). Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A 104: 10364-10369. (Publication) (All modifications)
[38, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[73, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[117, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[168, SUMO]Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V,, Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., Johnson, J.R., Krogan, N.J., Hunter, N. (2021). SUMO is a pervasive regulator of meiosis. Elife 10:e57720. (Publication) (All modifications)
[336, Phos]Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications)
[336, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[336, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[990, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[994, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[1802, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[1802, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[1964, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[1964, Phos]Memisoglu, G., Lanz, M.C., Eapen, V.V., Jordan, J.M., Lee, K., Smolka, M.B., Haber, J.E. (2019). Mec1(ATR) autophosphorylation and Ddc2(ATRIP) phosphorylation regulates DNA damage checkpoint signaling. Cell Rep 28: 1090-1102.e3 (Publication) (All modifications)
[1991, Phos]Hurst, V., Challa, K., Jonas, F., Forey, R., Sack, R., Seebacher, J., Schmid, C.D., Barkai, N., Shimada, K., Gasser, S.M., Poli, J. (2021). A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress. EMBO J 40: e108439 (Publication) (All modifications)
[1994, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[1994, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)