Basic Information
Name | Mitofusin FZO1 (EC 3.6.5.-) (Transmembrane GTPase FZO1) |
Uniprot ID | P38297 |
Systematic gene name | YBR179C |
Standard gene name | FZO1 |
Gene names | FZO1 YBR179C YBR1241 |
Description from SGD | YBR179C FZO1 SGDID:S000000383, Chr II from 589114-586547, Genome Release 64-3-1, reverse complement, Verified ORF, "Mitofusin, protein involved in mitochondrial outer membrane fusion; role in mitochondrial genome maintenance; efficient tethering and degradation of Fzo1p requires an intact N-terminal GTPase domain; targeted for destruction by the ubiquitin ligase SCF-Mdm30p and the cytosolic ubiquitin-proteasome system; activity regulated by ubiquitylation at conserved lysine residues and by deubiquitylases Ubp2p and Ubp12p" |
Protein length | 855 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MSEGKQQFKD SNKPHKDSTD QDDDAATIVP QTLTYSRNEG HFLGSNFHGV
TDDRTTLFDG EEGRREDDLL PSLRSSNSKA HLISSQLSQW NYNNNRVLLK
RSILKTQAFM DQLQEENNIR PIFIAANDER EKLHVLQLNI KLDGQYNTKE
KNGFNIEKKA LSKLFHSQIV SVTNHLNALK KRVDDVSSKV FITGDVNTGK
SALCNSLLKQ RLLPEDQLPC TNVFSEILEA RENDGIEEVH AIPLNIAPTL
KEAIDMYSIQ NPKTYEIHTL KELPDLVPQN GKYALLKIYI KDDKRPASTS
LLRNGTVDIS LIDSPGLNMD SLQTAEVMSR QEEIDLVIFV VNAENQLTLS
AKEFISLASR EKKLMFFVVK KFDKIRDKQR CKELILKQIR DLSPETYKRA
ADFVHFVSKN GDELPHYHNE NDNEDHGDRK PDDDPYSSSD PDPDFDSLED
SLRNFVLKKR SLSKLLPAKT YLSKLLSDII MISKSNMKMY SEEEIKINEQ
LETLRPEILS ARAKCNDLTT SVDQMAEQTI TMTYNNTKEA LLNALDVPLH
EYPKYQGLGQ IYDFIFSTEA FIANQIDESI GSSELFAKQK TDLLVKKIYE
IGKNELGDDF MCERVFRSEL MFRKRKHLIG KRLKVSLSIT DLFAPTWKGF
LSYLSWQKPV TAPLPDIEGQ TNEGQIGLMK YLGLKNYPLT QYWSRPSLLF
TSKIPTLTLY FLGSTKVVGN IILNGIKLSS WSSLKKLSVP VIVVGSLLGL
TYLIHDLPRA LPMNLSIKYK RKLQELDYIH LNAQRTSNEV RDVLRVPTRE
ILRSCEIIMD KKQITKKELE NKKESNLLSI KFFQSLYEGT VAQKLMVEEI
NLDID
TDDRTTLFDG EEGRREDDLL PSLRSSNSKA HLISSQLSQW NYNNNRVLLK
RSILKTQAFM DQLQEENNIR PIFIAANDER EKLHVLQLNI KLDGQYNTKE
KNGFNIEKKA LSKLFHSQIV SVTNHLNALK KRVDDVSSKV FITGDVNTGK
SALCNSLLKQ RLLPEDQLPC TNVFSEILEA RENDGIEEVH AIPLNIAPTL
KEAIDMYSIQ NPKTYEIHTL KELPDLVPQN GKYALLKIYI KDDKRPASTS
LLRNGTVDIS LIDSPGLNMD SLQTAEVMSR QEEIDLVIFV VNAENQLTLS
AKEFISLASR EKKLMFFVVK KFDKIRDKQR CKELILKQIR DLSPETYKRA
ADFVHFVSKN GDELPHYHNE NDNEDHGDRK PDDDPYSSSD PDPDFDSLED
SLRNFVLKKR SLSKLLPAKT YLSKLLSDII MISKSNMKMY SEEEIKINEQ
LETLRPEILS ARAKCNDLTT SVDQMAEQTI TMTYNNTKEA LLNALDVPLH
EYPKYQGLGQ IYDFIFSTEA FIANQIDESI GSSELFAKQK TDLLVKKIYE
IGKNELGDDF MCERVFRSEL MFRKRKHLIG KRLKVSLSIT DLFAPTWKGF
LSYLSWQKPV TAPLPDIEGQ TNEGQIGLMK YLGLKNYPLT QYWSRPSLLF
TSKIPTLTLY FLGSTKVVGN IILNGIKLSS WSSLKKLSVP VIVVGSLLGL
TYLIHDLPRA LPMNLSIKYK RKLQELDYIH LNAQRTSNEV RDVLRVPTRE
ILRSCEIIMD KKQITKKELE NKKESNLLSI KFFQSLYEGT VAQKLMVEEI
NLDID
Legend
- X Phoshorylation
- X Ubiquitination
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[2, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[75, Phos] | Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150. (Publication) (All modifications) |
[75, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[75, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[78, Phos] | Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150. (Publication) (All modifications) |
[78, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[78, Phos] | Ficarro, S.B., McCleland, M.L., Stukenberg, P.T., Burke, D.J., Ross, M.M., Shabanowitz, J., Hunt, D.F., White, F.M. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20: 301-305. (Publication) (All modifications) |
[78, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[79, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[209, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[370, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[393, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[398, Ubi] | Back, S., Gorman, A.W., Vogel, C., Silva, G.M. (2019). Site-specific K63 ubiquitinomics provides insights into translation regulation under stress. Journal of Proteome Research 18(1): 309-318. (Publication) (All modifications) |
[398, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[398, Ubi] | Fang, N.N., Chan, G.T., Zhu, M., Comyn, S.A., Persaud, A., Deshaies, R.J., Rotin, D., Gsponer, J., Mayor, T. (2014). Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nature Cell Biology 16(12): 1227-1237. (Publication) (All modifications) |
[398, Ubi] | Schuster, R., Anton, V., Simões, T., Altin, S., den Brave, F., Hermanns, T., Hospenthal, M., Komander, D., Dittmar, G., Dohmen, R.J., Escobar-Henriques, M. (2020). Dual role of a GTPase conformational switch for membrane fusion by mitofusin ubiquitylation. Life Sci Alliance 3: e201900476. (Publication) (All modifications) |
[398, Ubi] | Anton, F., Dittmar, G., Langer, T., Escobar-Henriques, M. (2013). Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways. Mol Cell 49: 487-498. (Publication) (All modifications) |
[436, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[436, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[437, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[437, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[438, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[438, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[439, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[439, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[464, Ubi] | Anton, F., Dittmar, G., Langer, T., Escobar-Henriques, M. (2013). Two deubiquitylases act on mitofusin and regulate mitochondrial fusion along independent pathways. Mol Cell 49: 487-498. (Publication) (All modifications) |