Basic Information
Name | Protein RMD9-like, mitochondrial |
Uniprot ID | P38330 |
Systematic gene name | YBR238C |
Standard gene name | YBR238C |
Gene names | YBR238C YBR1608 |
Description from SGD | YBR238C YBR238C SGDID:S000000442, Chr II from 697302-695107, Genome Release 64-3-1, reverse complement, Verified ORF, "Mitochondrial membrane protein; not required for respiratory growth but causes a synthetic respiratory defect in combination with rmd9 mutations; transcriptionally up-regulated by TOR; deletion increases life span; YBR238C has a paralog, RMD9, that arose from the whole genome duplication" |
Protein length | 731 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MIRLAQQTQV LKGKPPNQFV PHPTKNSLTH PMKFNGTIAM EHHEHNYAIP
YTPATFNNPA LATYQVSPAN HFVPHFGGNI GANNNNHLAQ NNSNNSNNHH
NNNRNHHHNN NRNHHQNNHN HSKYNNSNQG NSISPDSPWF HKVCAFEDCV
SQTLYMSQTP RRQNMKHHSE HPNSNANPLF WDSIGRAMGL YHDLLTTPEL
NSDRVSKLVH LLHNGLRANR NQLTRMNKKP DYDSQSFHKE MTNYLCKSLR
EISEDVLNGK VELNEYGAMH LITAFKELLL FEEAVDIWKA AINGQNTYTS
NIFLNPRVVG VILPILYDNG VSYPEIQALY EKSSSMINYF HPNLSVGMIR
ASLSASENDM ALKLFQKLCQ ESTEMKYGYL IETHLSFIGE CKDLNVAQTF
FDKALNDEMP YKIDLQVSYV KSFLRNIWSQ TRDFNHIYQI WYKSSLHYGR
NVNHGISSSL NDTFFDIFFE NYAVDKMQGF QTLQNIIQTY NNIKHIDEPF
FNIILAKCTV WHDRSILEYI DKSYEAYHIP KTIVAYRILL KSMGSVDDAS
NAEILQRWMD LIRKSDEIGQ RFIANADWAA LRDATVTWTQ NDRDSKKSNM
NSTQISRTAT PSPSLTPMDT PAPEHLFNNP QNPMDFYSHP ALQAATASGA
FDEFAAEAAS SSIPVDGRMV LYLKIVKRYS PYCRDSRQLA RLTTGTAVKY
SVLQEVLNQF QTLIVNDIPI PELHNLKPTC V
YTPATFNNPA LATYQVSPAN HFVPHFGGNI GANNNNHLAQ NNSNNSNNHH
NNNRNHHHNN NRNHHQNNHN HSKYNNSNQG NSISPDSPWF HKVCAFEDCV
SQTLYMSQTP RRQNMKHHSE HPNSNANPLF WDSIGRAMGL YHDLLTTPEL
NSDRVSKLVH LLHNGLRANR NQLTRMNKKP DYDSQSFHKE MTNYLCKSLR
EISEDVLNGK VELNEYGAMH LITAFKELLL FEEAVDIWKA AINGQNTYTS
NIFLNPRVVG VILPILYDNG VSYPEIQALY EKSSSMINYF HPNLSVGMIR
ASLSASENDM ALKLFQKLCQ ESTEMKYGYL IETHLSFIGE CKDLNVAQTF
FDKALNDEMP YKIDLQVSYV KSFLRNIWSQ TRDFNHIYQI WYKSSLHYGR
NVNHGISSSL NDTFFDIFFE NYAVDKMQGF QTLQNIIQTY NNIKHIDEPF
FNIILAKCTV WHDRSILEYI DKSYEAYHIP KTIVAYRILL KSMGSVDDAS
NAEILQRWMD LIRKSDEIGQ RFIANADWAA LRDATVTWTQ NDRDSKKSNM
NSTQISRTAT PSPSLTPMDT PAPEHLFNNP QNPMDFYSHP ALQAATASGA
FDEFAAEAAS SSIPVDGRMV LYLKIVKRYS PYCRDSRQLA RLTTGTAVKY
SVLQEVLNQF QTLIVNDIPI PELHNLKPTC V
Legend
- X Phoshorylation
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[132, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[132, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[132, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[132, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[137, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[137, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[137, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[137, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[236, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[236, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[527, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[527, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[527, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[606, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[606, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[606, Phos] | Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232. (Publication) (All modifications) |
[606, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[606, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[606, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[606, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[606, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |