Basic Information

NameNADPH-dependent aldose reductase GRE3 (AR) (EC 1.1.1.21) (Genes de respuesta a estres protein 3) (NADPH-dependent aldo-keto reductase GRE3) (Xylose reductase) (EC 1.1.1.-)
Uniprot IDP38715
Systematic gene nameYHR104W
Standard gene nameGRE3
Gene namesGRE3 YHR104W
Description from SGDYHR104W GRE3 SGDID:S000001146, Chr VIII from 323409-324392, Genome Release 64-3-1, Verified ORF, "Aldose reductase; involved in methylglyoxal, d-xylose, arabinose, and galactose metabolism; stress induced (osmotic, ionic, oxidative, heat shock, starvation and heavy metals); regulated by HOG pathway; overexpression allows xylose fermentation in strains expressing heterologous xylitol dehydrogenase and xylulokinase; protein abundance increases in response to DNA replication stress"
Protein length327
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MSSLVTLNNG LKMPLVGLGC WKIDKKVCAN QIYEAIKLGY RLFDGACDYG
NEKEVGEGIR KAISEGLVSR KDIFVVSKLW NNFHHPDHVK LALKKTLSDM
GLDYLDLYYI HFPIAFKYVP FEEKYPPGFY TGADDEKKGH ITEAHVPIID
TYRALEECVD EGLIKSIGVS NFQGSLIQDL LRGCRIKPVA LQIEHHPYLT
QEHLVEFCKL HDIQVVAYSS FGPQSFIEMD LQLAKTTPTL FENDVIKKVS
QNHPGSTTSQ VLLRWATQRG IAVIPKSSKK ERLLGNLEIE KKFTLTEQEL
KDISALNANI RFNDPWTWLD GKFPTFA

Legend

  • X Phoshorylation

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[2, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[2, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[259, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[294, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[294, Phos]Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications)
[294, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[294, Phos]Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications)
[294, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)