Basic Information

NameDNA mismatch repair protein MLH1 (MutL protein homolog 1) (Post meiotic segregation protein 2)
Uniprot IDP38920
Systematic gene nameYMR167W
Standard gene nameMLH1
Gene namesMLH1 PMS2 YMR167W YM8520.16
Description from SGDYMR167W MLH1 SGDID:S000004777, Chr XIII from 594886-597195, Genome Release 64-3-1, Verified ORF, "Protein required for mismatch repair in mitosis and meiosis; also required for crossing over during meiosis; forms a complex with Pms1p and Msh2p-Msh3p during mismatch repair; required for silencing at the silent mating-type loci and telomeres; human homolog is associated with hereditary non-polyposis colon cancer"
Protein length769
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MSLRIKALDA SVVNKIAAGE IIISPVNALK EMMENSIDAN ATMIDILVKE
GGIKVLQITD NGSGINKADL PILCERFTTS KLQKFEDLSQ IQTYGFRGEA
LASISHVARV TVTTKVKEDR CAWRVSYAEG KMLESPKPVA GKDGTTILVE
DLFFNIPSRL RALRSHNDEY SKILDVVGRY AIHSKDIGFS CKKFGDSNYS
LSVKPSYTVQ DRIRTVFNKS VASNLITFHI SKVEDLNLES VDGKVCNLNF
ISKKSISPIF FINNRLVTCD LLRRALNSVY SNYLPKGNRP FIYLGIVIDP
AAVDVNVHPT KREVRFLSQD EIIEKIANQL HAELSAIDTS RTFKASSIST
NKPESLIPFN DTIESDRNRK SLRQAQVVEN SYTTANSQLR KAKRQENKLV
RIDASQAKIT SFLSSSQQFN FEGSSTKRQL SEPKVTNVSH SQEAEKLTLN
ESEQPRDANT INDNDLKDQP KKKQKLGDYK VPSIADDEKN ALPISKDGYI
RVPKERVNVN LTSIKKLREK VDDSIHRELT DIFANLNYVG VVDEERRLAA
IQHDLKLFLI DYGSVCYELF YQIGLTDFAN FGKINLQSTN VSDDIVLYNL
LSEFDELNDD ASKEKIISKI WDMSSMLNEY YSIELVNDGL DNDLKSVKLK
SLPLLLKGYI PSLVKLPFFI YRLGKEVDWE DEQECLDGIL REIALLYIPD
MVPKVDTSDA SLSEDEKAQF INRKEHISSL LEHVLFPCIK RRFLAPRHIL
KDVVEIANLP DLYKVFERC

Legend

  • X Phoshorylation
  • X K-acetylation

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[24, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[59, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[63, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[135, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[135, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[170, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[318, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[371, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[371, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[381, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[384, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[431, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[431, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[431, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[439, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[439, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[439, Phos]Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications)
[439, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[441, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[441, Phos]Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications)
[441, Phos]Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232. (Publication) (All modifications)
[441, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[441, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)
[441, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[441, Phos]Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications)
[441, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[441, Phos]Smolka, M.B., Albuquerque, C.P., Chen, S.H., Zhou, H. (2007). Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A 104: 10364-10369. (Publication) (All modifications)
[441, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)
[483, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[496, K-acetyl]Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications)
[524, Phos]Jones, M.H., Keck, J.M., Wong, C.C., Xu, T., Yates, J.R., Winey, M. (2011). Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10: 3435-3440. (Publication) (All modifications)
[711, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[713, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[713, Phos]Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications)