Basic Information
Name | Vacuolar protein 8 |
Uniprot ID | P39968 |
Systematic gene name | YEL013W |
Standard gene name | VAC8 |
Gene names | VAC8 YEB3 YEL013W |
Description from SGD | YEL013W VAC8 SGDID:S000000739, Chr V from 128825-130561, Genome Release 64-3-1, Verified ORF, "Vacuolar membrane protein; vacuole-specific Myo2p receptor and Myo2p-Vac17p-Vac8p transport complex subunit required for vacuolar inheritance; required with Atg13p for the vesicle closure step of the cytoplasm-to-vacuole (CVT) pathway, for homotypic vacuole-vacuole fusion and for nucleus-vacuole junction formation with Nvj1p; contains 11 armadillo (ARM) repeats; myristoylated, palmitoylated, and phosphorylated" |
Protein length | 578 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MGSCCSCLKD SSDEASVSPI ADNEREAVTL LLGYLEDKDQ LDFYSGGPLK
ALTTLVYSDN LNLQRSAALA FAEITEKYVR QVSREVLEPI LILLQSQDPQ
IQVAACAALG NLAVNNENKL LIVEMGGLEP LINQMMGDNV EVQCNAVGCI
TNLATRDDNK HKIATSGALI PLTKLAKSKH IRVQRNATGA LLNMTHSEEN
RKELVNAGAV PVLVSLLSST DPDVQYYCTT ALSNIAVDEA NRKKLAQTEP
RLVSKLVSLM DSPSSRVKCQ ATLALRNLAS DTSYQLEIVR AGGLPHLVKL
IQSDSIPLVL ASVACIRNIS IHPLNEGLIV DAGFLKPLVR LLDYKDSEEI
QCHAVSTLRN LAASSEKNRK EFFESGAVEK CKELALDSPV SVQSEISACF
AILALADVSK LDLLEANILD ALIPMTFSQN QEVSGNAAAA LANLCSRVNN
YTKIIEAWDR PNEGIRGFLI RFLKSDYATF EHIALWTILQ LLESHNDKVE
DLVKNDDDII NGVRKMADVT FERLQRSGID VKNPGSNNNP SSNDNNSNNN
DTGSEHQPVE DASLELYNIT QQILQFLH
ALTTLVYSDN LNLQRSAALA FAEITEKYVR QVSREVLEPI LILLQSQDPQ
IQVAACAALG NLAVNNENKL LIVEMGGLEP LINQMMGDNV EVQCNAVGCI
TNLATRDDNK HKIATSGALI PLTKLAKSKH IRVQRNATGA LLNMTHSEEN
RKELVNAGAV PVLVSLLSST DPDVQYYCTT ALSNIAVDEA NRKKLAQTEP
RLVSKLVSLM DSPSSRVKCQ ATLALRNLAS DTSYQLEIVR AGGLPHLVKL
IQSDSIPLVL ASVACIRNIS IHPLNEGLIV DAGFLKPLVR LLDYKDSEEI
QCHAVSTLRN LAASSEKNRK EFFESGAVEK CKELALDSPV SVQSEISACF
AILALADVSK LDLLEANILD ALIPMTFSQN QEVSGNAAAA LANLCSRVNN
YTKIIEAWDR PNEGIRGFLI RFLKSDYATF EHIALWTILQ LLESHNDKVE
DLVKNDDDII NGVRKMADVT FERLQRSGID VKNPGSNNNP SSNDNNSNNN
DTGSEHQPVE DASLELYNIT QQILQFLH
Legend
- X Palmitoylation
- X Phoshorylation
- X Ubiquitination
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[4, Pal] | Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., Yao, X. (2008). CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21: 639-644. (Publication) (All modifications) |
[4, Pal] | Smotrys, J.E., Schoenfish, M.J., Stutz, M.A., Linder, M.E. (2005). The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. J Cell Biol 170: 1091-1099. (Publication) (All modifications) |
[5, Pal] | Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., Yao, X. (2008). CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21: 639-644. (Publication) (All modifications) |
[5, Pal] | Smotrys, J.E., Schoenfish, M.J., Stutz, M.A., Linder, M.E. (2005). The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. J Cell Biol 170: 1091-1099. (Publication) (All modifications) |
[7, Pal] | Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., Yao, X. (2008). CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21: 639-644. (Publication) (All modifications) |
[7, Pal] | Smotrys, J.E., Schoenfish, M.J., Stutz, M.A., Linder, M.E. (2005). The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. J Cell Biol 170: 1091-1099. (Publication) (All modifications) |
[11, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[11, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[11, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[11, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[12, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[12, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[16, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[16, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[16, Phos] | Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232. (Publication) (All modifications) |
[16, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[16, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[16, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[16, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[16, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[16, Phos] | Pultz, D., Bennetzen, M.V., Rødkær, S.V., Zimmermann, C., Enserink, J.M., Andersen, J.S., Færgeman, N.J. (2012). Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Mol Biosyst 8: 796-803. (Publication) (All modifications) |
[16, Phos] | Soulard, A., Cremonesi, A., Moes, S., Schütz, F., Jenö, P., Hall, M.N. (2010). The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Molecular Biology of the Cell 21(19): 3475-3486. (Publication) (All modifications) |
[16, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[16, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[18, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[18, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[18, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[18, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[18, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[282, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[515, Ubi] | Back, S., Gorman, A.W., Vogel, C., Silva, G.M. (2019). Site-specific K63 ubiquitinomics provides insights into translation regulation under stress. Journal of Proteome Research 18(1): 309-318. (Publication) (All modifications) |
[527, Phos] | Dokládal, L., Stumpe, M., Hu, Z., Jaquenoud, M., Dengjel, J., De Virgilio, C. (2021). Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37: 110149. (Publication) (All modifications) |
[527, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[547, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[554, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[567, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |