Basic Information
Name | Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial (EC 6.2.1.5) (Succinyl-CoA synthetase beta chain) (SCS-beta) |
Uniprot ID | P53312 |
Systematic gene name | YGR244C |
Standard gene name | LSC2 |
Gene names | LSC2 YGR244C G8625 |
Description from SGD | YGR244C LSC2 SGDID:S000003476, Chr VII from 979319-978036, Genome Release 64-3-1, reverse complement, Verified ORF, "Beta subunit of succinyl-CoA ligase; succinyl-CoA ligase is a mitochondrial enzyme of the TCA cycle that catalyzes the nucleotide-dependent conversion of succinyl-CoA to succinate" |
Protein length | 427 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MYSRKSLSLI SKCGQLSRLN AQAALQARRH LSIHEYRSAQ LLREYGIGTP
EGFPAFTPEE AFEAAKKLNT NKLVIKAQAL TGGRGKGHFD TGYKSGVHMI
ESPQQAEDVA KEMLNHNLIT KQTGIAGKPV SAVYIVKRVD TKHEAYLSIL
MDRQTKKPMI IASSQGGMNI EEVAERTPDA IKKFSIETSK GLSPQMAKDV
AKSLGFSPDA QDEAAKAVSN LYKIFMERDA TQVEINPLSE IEHDPTHKIM
CTDAKFGFDD NASFRQEKIY SWRDLSQEDP DEVKAKKYDL NFVKLKGNIG
CLVNGAGLAM ATMDVIKLNG GDPANFLDCG GGATPETIKQ GFELILSNKN
VDAIFVNIFG GIVRCDYVAL GLVEAARELE VRVPIVARLQ GTKVEEGRDI
INKSGVKIYS FDELDPAAKK VVELTQN
EGFPAFTPEE AFEAAKKLNT NKLVIKAQAL TGGRGKGHFD TGYKSGVHMI
ESPQQAEDVA KEMLNHNLIT KQTGIAGKPV SAVYIVKRVD TKHEAYLSIL
MDRQTKKPMI IASSQGGMNI EEVAERTPDA IKKFSIETSK GLSPQMAKDV
AKSLGFSPDA QDEAAKAVSN LYKIFMERDA TQVEINPLSE IEHDPTHKIM
CTDAKFGFDD NASFRQEKIY SWRDLSQEDP DEVKAKKYDL NFVKLKGNIG
CLVNGAGLAM ATMDVIKLNG GDPANFLDCG GGATPETIKQ GFELILSNKN
VDAIFVNIFG GIVRCDYVAL GLVEAARELE VRVPIVARLQ GTKVEEGRDI
INKSGVKIYS FDELDPAAKK VVELTQN
Legend
- X Phoshorylation
- X K-Succinylation
- X K-acetylation
- X Multiple modifications
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[32, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[66, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[72, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[76, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[81, Phos] | Guo X, Niemi NM, Hutchins PD, et al (2017b) Ptc7p dephosphorylates select mitochondrial proteins to enhance metabolic function. Cell Reports 18:307–313. (Publication) (All modifications) |
[81, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[86, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[93, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[93, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[94, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[95, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[95, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[102, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[102, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[102, Phos] | Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150. (Publication) (All modifications) |
[102, Phos] | Guo X, Niemi NM, Hutchins PD, et al (2017b) Ptc7p dephosphorylates select mitochondrial proteins to enhance metabolic function. Cell Reports 18:307–313. (Publication) (All modifications) |
[102, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[102, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[102, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[102, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[102, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[121, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |
[142, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[157, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[183, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[190, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[193, Phos] | Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150. (Publication) (All modifications) |
[193, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[198, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[202, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[203, Phos] | Guo X, Niemi NM, Coon JJ, Pagliarini DJ (2017a) Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 292:11751–11759. (Publication) (All modifications) |
[203, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[203, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[207, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[207, Phos] | Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150. (Publication) (All modifications) |
[207, Phos] | Guo X, Niemi NM, Coon JJ, Pagliarini DJ (2017a) Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 292:11751–11759. (Publication) (All modifications) |
[207, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[207, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[207, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[216, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[231, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[263, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[263, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[263, Phos] | Renvoisé M, Bonhomme L, Davanture M, et al (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Journal of Proteomics 106:140–150. (Publication) (All modifications) |
[263, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[263, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[263, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[263, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[263, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[263, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[268, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |
[276, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[276, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[276, Phos] | Guo X, Niemi NM, Hutchins PD, et al (2017b) Ptc7p dephosphorylates select mitochondrial proteins to enhance metabolic function. Cell Reports 18:307–313. (Publication) (All modifications) |
[276, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[276, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[276, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[276, Phos] | Chen, S.H., Albuquerque, C.P., Liang, J., Suhandynata, R.T., Zhou, H. (2010). A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285: 12803-12812. (Publication) (All modifications) |
[276, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[284, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[284, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[287, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[287, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |
[294, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[334, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[347, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[347, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[393, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[393, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |
[403, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[407, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[419, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |
[420, K-succ] | Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications) |