Basic Information
Name | Cysteine--tRNA ligase (EC 6.1.1.16) (Cysteinyl-tRNA synthetase) (CysRS) |
Uniprot ID | P53852 |
Systematic gene name | YNL247W |
Standard gene name | CRS1 |
Gene names | CRS1 YNL247W N0885 |
Description from SGD | YNL247W CRS1 SGDID:S000005191, Chr XIV from 182875-185178, Genome Release 64-3-1, Verified ORF, "Cysteinyl-tRNA synthetase; CRS1 has two in-frame start codons resulting in a shorter isoform that is retained in the cytosol and a longer form that is mitochondrial; may interact with ribosomes, based on co-purification experiments; human gene CARS allows growth of the yeast haploid null mutant after sporulation of a heterozygous diploid" |
Protein length | 767 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MNIFIKALRR YTIMSTPKIV QPKWKVPTPQ AKETVLKLYN SLTRSKVEFI
PQSGNRGVTW YSCGPTVYDA SHMGHARNYV SIDINRRIIQ DYFGYDVQFV
QNVTDIDDKI ILRARQNYLF DNFVKENDTK FNATVVDKVK TALFQYINKN
FTIQGSEIKT IEEFETWLSN ADTETLKLEN PKFPMHVTAV QNAIESITKG
DSMDAEVAFE KVKDVTVPLL DKELGSTISN PEIFRQLPAY WEQKFNDDML
SLNVLPPTVT TRVSEYVPEI IDFVQKIIDN GYAYATSDGS VYFDTLKFDK
SPNHDYAKCQ PWNKGQLDLI NDGEGSLSNF ADNGKKSNND FALWKASKAG
EPEWESPWGK GRPGWHIECS VMASDILGSN IDIHSGGIDL AFPHHDNELA
QSEARFDNQQ WINYFLHTGH LHIEGQKMSK SLKNFITIQE ALKKFSPRQL
RLAFASVQWN NQLDFKESLI HEVKSFENSM NNFFKTIRAL KNDAASAGHI
SKKFSPLEKE LLADFVESES KVHSAFCDNL STPVALKTLS ELVTKSNTYI
TTAGAALKIE PLIAICSYIT KILRIIGFPS RPDNLGWAAQ AGSNDGSLGS
LEDTVMPYVK CLSTFRDDVR SLAIKKAEPK EFLQLTDKIR NEDLLNLNVA
LDDRNGQSAL IKFLTNDEKL EIVKLNEEKH ANELAKKQKK LEQQKLREQK
ENERKQKAQI KPQDMFKDVT LYSAWDEQGL PTKDKDGNDI TKSMTKKLKK
QWEQQKKLHE EYFGEDK
PQSGNRGVTW YSCGPTVYDA SHMGHARNYV SIDINRRIIQ DYFGYDVQFV
QNVTDIDDKI ILRARQNYLF DNFVKENDTK FNATVVDKVK TALFQYINKN
FTIQGSEIKT IEEFETWLSN ADTETLKLEN PKFPMHVTAV QNAIESITKG
DSMDAEVAFE KVKDVTVPLL DKELGSTISN PEIFRQLPAY WEQKFNDDML
SLNVLPPTVT TRVSEYVPEI IDFVQKIIDN GYAYATSDGS VYFDTLKFDK
SPNHDYAKCQ PWNKGQLDLI NDGEGSLSNF ADNGKKSNND FALWKASKAG
EPEWESPWGK GRPGWHIECS VMASDILGSN IDIHSGGIDL AFPHHDNELA
QSEARFDNQQ WINYFLHTGH LHIEGQKMSK SLKNFITIQE ALKKFSPRQL
RLAFASVQWN NQLDFKESLI HEVKSFENSM NNFFKTIRAL KNDAASAGHI
SKKFSPLEKE LLADFVESES KVHSAFCDNL STPVALKTLS ELVTKSNTYI
TTAGAALKIE PLIAICSYIT KILRIIGFPS RPDNLGWAAQ AGSNDGSLGS
LEDTVMPYVK CLSTFRDDVR SLAIKKAEPK EFLQLTDKIR NEDLLNLNVA
LDDRNGQSAL IKFLTNDEKL EIVKLNEEKH ANELAKKQKK LEQQKLREQK
ENERKQKAQI KPQDMFKDVT LYSAWDEQGL PTKDKDGNDI TKSMTKKLKK
QWEQQKKLHE EYFGEDK
Legend
- X Phoshorylation
- X Ubiquitination
- X K-acetylation
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[41, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[41, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[41, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[46, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[156, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[301, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[301, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[301, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[301, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[326, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[326, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[326, Phos] | Studer RA, Rodriguez-Mias RA, Haas KM, et al (2016) Evolution of protein phosphorylation across 18 fungal species. Science 354:229–232. (Publication) (All modifications) |
[326, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[326, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[326, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[326, Phos] | Chen, Y.C., Jiang, P.H., Chen, H.M., Chen, C.H., Wang, Y.T., Chen, Y.J., Yu, C.J., Teng, S.C. (2018a). Glucose intake hampers PKA-regulated HSP90 chaperone activity. Elife 7: e39925. (Publication) (All modifications) |
[326, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[326, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[326, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[328, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[328, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[328, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[328, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[337, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[665, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[665, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[665, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[665, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[665, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[665, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[665, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[665, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[679, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |
[743, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |