Basic Information

Name37S ribosomal protein MRP51, mitochondrial (Mitochondrial small ribosomal subunit protein bS1m)
Uniprot IDQ02950
Systematic gene nameYPL118W
Standard gene nameMRP51
Gene namesMRP51 YPL118W
Description from SGDYPL118W MRP51 SGDID:S000006039, Chr XVI from 326628-327662, Genome Release 64-3-1, Verified ORF, "Mitochondrial ribosomal protein of the small subunit; MRP51 exhibits genetic interactions with mutations in the COX2 and COX3 mRNA 5'-untranslated leader sequences"
Protein length344
Downloadsequence (fasta, from Uniprot), modifications (csv format)
Database linksUniprot, SGD, TheCellVision.org, FungiDB

Sequence

MTLAELLGRS RIAQVANNHK PLTYTGKKFH PTHQIIETKP STLYRQEWGL
KSAIPSKIKS RYLVYNDLDT LERITTFEPR GGTQWNRLRF QEMGVPIVSN
IGRQNPFFKY ISRPEDESHA KLSLFKEMKG DTDISPAAMK KRLKKITALI
RSFQDEFKEW LVENHPDELK LNSNKLEDYV VKFLNKKLET KTNKKFNTEI
IGTGGLSYSL PGKLKNSPNG VIQRTVVPGR ILNVVKENND NKWLAAIGGF
VADVVFFQSP PSSFNSMGDF IRMKTFLFEI LEASMEKNGS VSMHARLLEP
QNDKTREFFN KRPIYKPLTS RRARRPSVGN IQEANNLLNI IKGN

Legend

  • X K-acetylation
  • X Ubiquitination
  • X Phoshorylation
  • X K-Succinylation

Structure

Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.


Use imported representation

Loading structure from server... It may take a while.

If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.

References

[182, K-acetyl]Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications)
[195, Ubi]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[198, Phos]Swaney, D.L.,  Beltrao, P.,  Starita, L.,  Guo, A.,  Rush, J.,  Fields, S.,  Krogan, N.J.,  Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications)
[304, K-succ]Frankovsky, J., Keresztesová, B., Bellová, J., et al. (2021). The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. Journal of Biological Chemistry, 297(4): 101155. (Publication) (All modifications)
[327, Phos]Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications)
[327, Phos]Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications)
[327, Phos]Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications)
[327, Phos]MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications)
[327, Phos]Holt, L.J.,  Tuch, B.B.,  Villén, J.,  Johnson, A.D.,  Gygi, S.P.,  Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications)
[327, Phos]Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications)