Basic Information
Name | Telomere length regulation protein ELG1 (Regulator of Ty1 transposition protein 110) (Telomere elongation suppressor ELG1) |
Uniprot ID | Q12050 |
Systematic gene name | YOR144C |
Standard gene name | ELG1 |
Gene names | ELG1 RTT110 YOR144C O3510 YOR3510C |
Description from SGD | YOR144C ELG1 SGDID:S000005670, Chr XV from 605092-602717, Genome Release 64-3-1, reverse complement, Verified ORF, "Subunit of an alternative replication factor C complex; important for DNA replication and genome integrity; suppresses spontaneous DNA damage; involved in homologous recombination-mediated repair and telomere homeostasis; required for PCNA (Pol30p) unloading during DNA replication" |
Protein length | 791 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MKRHVSLSDI LTGNKRKVRR QDALQITIDD ENDTESGTFD ARTAKHDDSS
VIFLNHSVVK PIEAVSTNHK SAKEFLMTKR TKEKCDDDDD DLIVISDKSP
KSETNCSKIA LSQEHEDDIS IISTSRIKSS LLNERASKIK NFLKHETTDT
FKRLNSISKL NEIEPPLPLH QSIFPVGDKE LSDRSVDIPL PFRTIPPLNH
NFLPSDYESL KDKNSASCIP VRYQAPVLLG TNIKRNTTLT WPQLFKPVTL
KQVLIEPKLK LRIKNWIETS FHTLEKPTLR NRLLNRINPN KQQGSGDELA
NFIVPDLEED ENLRPDFYRN GEANSSLSEF VPLMILHGNS IGKKTLIQTI
MREIAGDDNS YQIYEVNSNM NRSKKDLLDI LLDFTTTHYV KDSSKRKSDY
GLVLFNDVDV LFKEHDRGYW AMISKLCEFS RRPLVLTCKD LSLVPSELIA
LASEQNSLFH TKKISTSTVY AFLTKYLKSL EIEVCDDWLR DVVKQNNADI
RKCLMHLQFW CVDTEADLIS SKNRLPVLTS TLGSSVKDIS QLTDLLSIND
VIGQATLNRS MVRQEIDSTT MTPEKVNTFQ DQNLDDEMKL KFDYVIDYKL
HLNDPNRQPL LPFELNIYQH IQEQLEARYS YVREANHRLD NEYLVNRFKK
MTESTLNFLA SRIPKYDHLQ SARRTRNSKK ISDILNQFKG IYNDETLNEN
AEIDLLSATT QQIKAEINPF VFEIAKSDAN VKNENKQIFE LHSENVSERR
YKDLVYQLSQ EGVLKNVWFN ADPSIVVRKW EHLHSGFSKN K
VIFLNHSVVK PIEAVSTNHK SAKEFLMTKR TKEKCDDDDD DLIVISDKSP
KSETNCSKIA LSQEHEDDIS IISTSRIKSS LLNERASKIK NFLKHETTDT
FKRLNSISKL NEIEPPLPLH QSIFPVGDKE LSDRSVDIPL PFRTIPPLNH
NFLPSDYESL KDKNSASCIP VRYQAPVLLG TNIKRNTTLT WPQLFKPVTL
KQVLIEPKLK LRIKNWIETS FHTLEKPTLR NRLLNRINPN KQQGSGDELA
NFIVPDLEED ENLRPDFYRN GEANSSLSEF VPLMILHGNS IGKKTLIQTI
MREIAGDDNS YQIYEVNSNM NRSKKDLLDI LLDFTTTHYV KDSSKRKSDY
GLVLFNDVDV LFKEHDRGYW AMISKLCEFS RRPLVLTCKD LSLVPSELIA
LASEQNSLFH TKKISTSTVY AFLTKYLKSL EIEVCDDWLR DVVKQNNADI
RKCLMHLQFW CVDTEADLIS SKNRLPVLTS TLGSSVKDIS QLTDLLSIND
VIGQATLNRS MVRQEIDSTT MTPEKVNTFQ DQNLDDEMKL KFDYVIDYKL
HLNDPNRQPL LPFELNIYQH IQEQLEARYS YVREANHRLD NEYLVNRFKK
MTESTLNFLA SRIPKYDHLQ SARRTRNSKK ISDILNQFKG IYNDETLNEN
AEIDLLSATT QQIKAEINPF VFEIAKSDAN VKNENKQIFE LHSENVSERR
YKDLVYQLSQ EGVLKNVWFN ADPSIVVRKW EHLHSGFSKN K
Legend
- X Phoshorylation
- X SUMOylation
- X K-acetylation
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[6, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[6, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[6, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[6, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[6, Phos] | Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948): 1682-1686. (Publication) (All modifications) |
[6, Phos] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[6, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[99, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[112, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[112, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[112, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[112, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[112, Phos] | Shkedy, D., Singh, N., Shemesh, K., Amir, A., Geiger, T., Liefshitz, B., Harari, Y., Kupiec, M. (2015). Regulation of Elg1 activity by phosphorylation. Cell Cycle 14: 3689-3697. (Publication) (All modifications) |
[112, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[144, SUMO] | Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V,, Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., Johnson, J.R., Krogan, N.J., Hunter, N. (2021). SUMO is a pervasive regulator of meiosis. Elife 10:e57720. (Publication) (All modifications) |
[156, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[156, Phos] | MacGilvray, M.E., Shishkova, E., Place, M., Wagner, E.R., Coon, J.J., Gasch, A.P. (2020). Phosphoproteome response to dithiothreitol reveals unique versus shared features of Saccharomyces cerevisiae stress responses. Journal of Proteome Research 19(8): 3405-3417. (Publication) (All modifications) |
[529, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[529, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[534, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[534, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[682, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[779, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |