|
|
9 medziľahlých revízií od jedného používateľa nie je zobrazených. |
Riadok 1: |
Riadok 1: |
− | Nepovinná domáca úloha
| |
| | | |
− | ==A (2 body)==
| |
− | Uvažujme Morissov-Prattov algoritmus pre vzorku P dĺžky m, ktorý bežíme na veľmi dlhom texte T. Koľko najviac bude trvať spracovanie úseku dĺžky k niekde uprostred textu T ako funkcia parametrov m a k? Hodnota k môže byť menšia alebo väčšia ako m. Uveďte asymptotický horný aj dolný odhad, t.j aj príklad, kde to bude trvať čo najdlhšie (príklad by mal fungovať pre všeobecné m a k, ale môžete si zvoliť T a P a aj ktorý úsek T dĺžky k uvažujete).
| |
− |
| |
− | ==B1 (1 bod)==
| |
− | V nasledujúcej sérii podpríkladov sa vrátime k binárnemu reťazcu, o ktorom sme sa bavili, že má veľký lexikografický strom všetkých sufixov. Postupne to podrobnejšie ukážeme. Uvažujme reťazec tvaru <math>T_k = 1010^210^310^41\dots 10^k1</math>. Aká je dĺžka <math>T_k</math>? (presný vzorec). Ak označíme <math>n=|T_k|</math>, vyjadrite ''k'' ako funkciu ''n'', asymptoticky, t.j. v <math>\Theta</math> notácii.
| |
− |
| |
− | ==B2 (2 body)==
| |
− | Ak vezmeme dva sufixy reťazca <math>T_k</math> a začneme ich porovnávať od začiatku, ako dlho bude v najhoršom prípade trvať, kým nájdeme prvý rozdiel? Vyjadrite asymptoticky ako funkciu n, horný aj dolný odhad.
| |
− |
| |
− | Poznámka: pýtame sa na časovú zložitosť cyklu <tt>x=0; while(Tk[i+x]==Tk[j+x]} { x++; }</tt>
| |
− |
| |
− | ==B3 (1 bod)==
| |