Basic Information
Name | Serine/threonine-protein phosphatase PP1-2 (EC 3.1.3.16) |
Uniprot ID | P32598 |
Systematic gene name | YER133W |
Standard gene name | GLC7 |
Gene names | GLC7 CID1 DIS2 YER133W |
Description from SGD | YER133W GLC7 SGDID:S000000935, Chr V from 432495-432671,433197-433958, Genome Release 64-3-1, Verified ORF, "Type 1 S/T protein phosphatase (PP1) catalytic subunit; involved in glycogen metabolism, sporulation and mitotic progression; interacts with multiple regulatory subunits; regulates actomyosin ring formation; subunit of CPF; recruited to mating projections by Afr1p interaction; regulates nucleocytoplasmic shuttling of Hxk2p; import into the nucleus is inhibited during spindle assembly checkpoint arrest; involved in dephosphorylating Rps6a/b and Bnr1p" |
Protein length | 312 |
Download | sequence (fasta, from Uniprot), modifications (csv format) |
Database links | Uniprot, SGD, TheCellVision.org, FungiDB |
Sequence
MDSQPVDVDN IIDRLLEVRG SKPGQQVDLE ENEIRYLCSK ARSIFIKQPI
LLELEAPIKI CGDIHGQYYD LLRLFEYGGF PPESNYLFLG DYVDRGKQSL
ETICLLLAYK IKYPENFFIL RGNHECASIN RIYGFYDECK RRYNIKLWKT
FTDCFNCLPI AAIIDEKIFC MHGGLSPDLN SMEQIRRVMR PTDIPDVGLL
CDLLWSDPDK DIVGWSENDR GVSFTFGPDV VNRFLQKQDM ELICRAHQVV
EDGYEFFSKR QLVTLFSAPN YCGEFDNAGA MMSVDESLLC SFQILKPAQK
SLPRQAGGRK KK
LLELEAPIKI CGDIHGQYYD LLRLFEYGGF PPESNYLFLG DYVDRGKQSL
ETICLLLAYK IKYPENFFIL RGNHECASIN RIYGFYDECK RRYNIKLWKT
FTDCFNCLPI AAIIDEKIFC MHGGLSPDLN SMEQIRRVMR PTDIPDVGLL
CDLLWSDPDK DIVGWSENDR GVSFTFGPDV VNRFLQKQDM ELICRAHQVV
EDGYEFFSKR QLVTLFSAPN YCGEFDNAGA MMSVDESLLC SFQILKPAQK
SLPRQAGGRK KK
Legend
- X Phoshorylation
- X Ubiquitination
- X SUMOylation
- X Multiple modifications
Structure
Structure visualized by GLmol written by biochem_fan. The structure was downloaded from the AlphaFold Protein Structure Database.
Use imported representation
Loading structure from server... It may take a while.
If you believe something went wrong, please make sure PDB ID is correct.
Please also make sure that WebGL is enabled in your browser.
- Internet Explorer: sorry. IE doesn't support WebGL.
- Firefox (version 4 or later): try force enable WebGL.
- Chrome: try force enable WebGL.
- Safari: enable WebGL.
References
[3, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[3, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[3, Phos] | Chen, S.H., Albuquerque, C.P., Liang, J., Suhandynata, R.T., Zhou, H. (2010). A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285: 12803-12812. (Publication) (All modifications) |
[3, Phos] | Breitkreutz, A., Choi, H., Sharom, J.R., Boucher, L., Neduva, V., Larsen, B., Lin, Z.Y., Breitkreutz, B.J., Stark, C., Liu, G., Ahn, J., Dewar-Darch, D., Reguly, T., Tang, X., Almeida, R., Qin, Z.S., Pawson, T., Gingras, A.C., Nesvizhskii, A.I., Tyers, M. (2010). A global protein kinase and phosphatase interaction network in yeast. Science 328: 1043-1046. (Publication) (All modifications) |
[3, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[21, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[22, Ubi] | Back, S., Gorman, A.W., Vogel, C., Silva, G.M. (2019). Site-specific K63 ubiquitinomics provides insights into translation regulation under stress. Journal of Proteome Research 18(1): 309-318. (Publication) (All modifications) |
[22, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[22, Ubi] | Fang, N.N., Chan, G.T., Zhu, M., Comyn, S.A., Persaud, A., Deshaies, R.J., Rotin, D., Gsponer, J., Mayor, T. (2014). Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nature Cell Biology 16(12): 1227-1237. (Publication) (All modifications) |
[40, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[43, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[47, SUMO] | Bhagwat, N.R., Owens, S.N., Ito, M., Boinapalli, J.V,, Poa, P., Ditzel, A., Kopparapu, S., Mahalawat, M., Davies, O.R., Collins, S.R., Johnson, J.R., Krogan, N.J., Hunter, N. (2021). SUMO is a pervasive regulator of meiosis. Elife 10:e57720. (Publication) (All modifications) |
[112, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[128, Phos] | Guo X, Niemi NM, Coon JJ, Pagliarini DJ (2017a) Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 292:11751–11759. (Publication) (All modifications) |
[128, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[146, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[149, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[176, Phos] | Lanz MC, Yugandhar K, Gupta S, Sanford EJ, Faça VM, Vega S, Joiner AMN, Fromme JC, Yu H, Smolka MB (2021). In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Reports, e51121. (Publication) (All modifications) |
[176, Phos] | Vlastaridis P, Kyriakidou P, Chaliotis A, et al (2017) Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. GigaScience 6:1–11. (Publication) (All modifications) |
[176, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[176, Phos] | Albuquerque, C.P., Smolka, M.B., Payne, S.H., Bafna, V., Eng, J., Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular and Cellular Proteomics 7(7):1389-1396. (Publication) (All modifications) |
[176, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[223, Phos] | Guo X, Niemi NM, Coon JJ, Pagliarini DJ (2017a) Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 292:11751–11759. (Publication) (All modifications) |
[223, Phos] | Zhou, X., Li, W., Liu, Y., Amon, A. (2021. Cross-compartment signal propagation in the mitotic exit network. Elife 10:e63645. (Publication) (All modifications) |
[223, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |
[237, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[259, K-acetyl] | Henriksen, P., Wagner, S. A., Weinert, B. T., et al. (2012). Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 11(11), 1510-1522. (Publication) (All modifications) |
[259, Ubi] | Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., Villén, J. (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods 10(7): 676-682. (Publication) (All modifications) |
[301, Phos] | Bai Y, Chen B, Li M, et al (2017) FPD: A comprehensive phosphorylation database in fungi. Fungal Biology 121:869–875. (Publication) (All modifications) |
[301, Phos] | Frankovsky, J., Vozáriková, V., Nosek, J., Tomáška, Ľ. (2021a). Mitochondrial protein phosphorylation in yeast revisited.Mitochondrion 57:148-162. (Publication) (All modifications) |